cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A263789 Triangle read by rows: T(n,k) (n>=0, 0<=k<=floor(n/2)) is the number of permutations of n and k valleys (considered cyclically).

Original entry on oeis.org

1, 1, 0, 2, 0, 6, 0, 16, 8, 0, 40, 80, 0, 96, 528, 96, 0, 224, 2912, 1904, 0, 512, 14592, 23040, 2176, 0, 1152, 69120, 221184, 71424, 0, 2560, 316160, 1858560, 1372160, 79360, 0, 5632, 1413632, 14353152, 20252672, 3891712, 0, 12288, 6223872, 104742912
Offset: 0

Views

Author

Christian Stump, Oct 26 2015

Keywords

Comments

Conjecture: column k > 0 is asymptotic to n * 2^(n-2*k) * k^(n-1). - Vaclav Kotesovec, Oct 26 2015

Examples

			Triangle begins:
  1;
  1;
  0,  2;
  0,  6;
  0, 16,   8;
  0, 40,  80;
  0, 96, 528, 96;
  ...
		

Crossrefs

Columns k=1-6 give: A057711 (for n>1), A159710, A159711, A159712, A159713, A159714.
Row sums give A000142.

Programs

  • Maple
    b:= proc(u, o, t) option remember; expand(`if`(u+o=0, x,
          add(b(u-j, o+j-1, 0), j=1..u)*`if`(min(t, n)>0, x, 1)+
          add(b(u+j-1, o-j, 1), j=1..o)))
        end:
    T:= n-> `if`(n<2, 1, (p-> seq(n*coeff(p, x, i)
            , i=0..degree(p)))(b(n-1, 0$2))):
    seq(T(n), n=0..14);  # Alois P. Heinz, Oct 28 2015
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = Expand[If[u+o == 0, x, Sum[b[u-j, o+j-1, 0], {j, 1, u}]*If[Min[t, n] > 0, x, 1] + Sum[b[u+j-1, o-j, 1], {j, 1, o}]]]; T[n_] := If[n<2, 1, Function[p, Table[n*Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 24 2017, after Alois P. Heinz *)

Formula

T(n,k) = n*A008303(n-1, k-1) for n > 1. - Andrew Howroyd, May 13 2020

Extensions

More terms from Alois P. Heinz, Oct 26 2015
Showing 1-1 of 1 results.