cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A334778 Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly k local maxima.

Original entry on oeis.org

1, 0, 1, 0, 4, 2, 0, 18, 66, 6, 0, 72, 1168, 1192, 88, 0, 270, 16220, 61830, 33600, 1480, 0, 972, 202416, 2150688, 3821760, 1268292, 40272, 0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944, 0, 11664, 27517568, 1629254640, 15313310208, 36381368048, 24342647424, 3963672720, 71865728
Offset: 0

Views

Author

Andrew Howroyd, May 13 2020

Keywords

Comments

T(n,k) is divisible by n for n > 0.

Examples

			Triangle begins:
   1;
   0,    1;
   0,    4,       2;
   0,   18,      66,        6;
   0,   72,    1168,     1192,        88;
   0,  270,   16220,    61830,     33600,      1480;
   0,  972,  202416,  2150688,   3821760,   1268292,    40272;
   0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944;
  ...
The T(2,1) = 4 permutations of 1122 with 1 local maximum are 1122, 1221, 2112, 2211.
The T(2,2) = 2 permutations of 1122 with 2 local maxima are 1212, 2121.
		

Crossrefs

Columns k=0..6 are A000007, A027261(n-1), A159716, A159717, A159718, A159719, A159720.
Row sums are A000680.
Main diagonal is A334779.
The version for permutations of 1..n is A263789.

Programs

  • PARI
    CircPeaksBySig(sig, D)={
      my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
        my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
        mapput(FC, key, z)); z);
      local(FC=Map());
      vector(#D, i, my(k=D[i], lev=#sig); if(lev==1, k==1, my(m=sig[lev]); lev*sum(j=1, min(m,k), m*binomial(m-1,j-1)*F(lev-1,k-j,j-1)/j)));
    }
    Row(n)={ if(n==0, [1], CircPeaksBySig(vector(n,i,2), [0..n])) }
    { for(n=0, 8, print(Row(n))) }

Formula

T(n,k) = n*(2*F(2,n-1,k-1,0) + F(2,n-1,k-2,1)) for n > 1 where F(m,n,p,q) = Sum_{i=0..p} Sum_{j=0..min(m-i, q)} F(m, n-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) for n > 1 with F(m,1,0,q) = binomial(m-1, q), F(m,1,p,q) = 0 for p > 0.
A334780(n) = Sum_{k=1..n} k*T(n,k).

A159710 Number of permutations of 1..n arranged in a circle with exactly 2 local maxima.

Original entry on oeis.org

0, 0, 0, 0, 8, 80, 528, 2912, 14592, 69120, 316160, 1413632, 6223872, 27103232, 117067776, 502456320, 2145517568, 9122349056, 38644678656, 163186343936, 687144960000, 2886107922432, 12094385684480, 50577004298240, 211105074905088, 879606785638400
Offset: 0

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Column k=2 of A263789.

Programs

  • Magma
    [0,0] cat [2^(-5+n)*(4+2^n-4*n)*n: n in [2..30]]; // G. C. Greubel, Jun 02 2018
  • Mathematica
    LinearRecurrence[{14,-76,200,-256,128},{0,0,0,0,8,80,528},30] (* Harvey P. Dale, Sep 23 2017 *)
    Join[{0,0}, Table[2^(-5+n)*(4+2^n-4*n)*n, {n, 2, 30}]] (* G. C. Greubel, Jun 02 2018 *)
  • PARI
    concat([0, 0, 0, 0], Vec(-8*(2*x^2-4*x+1)*x^4 / ((4*x-1)^2*(2*x -1)^3) + O(x^100))) \\ Altug Alkan, Oct 26 2015
    
  • PARI
    a(n) = if(n==1, 0, 2^(-5+n)*(4+2^n-4*n)*n) \\ Colin Barker, Oct 26 2015
    

Formula

G.f.: -8*(2*x^2-4*x+1)*x^4 / ((4*x-1)^2*(2*x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
a(n) = 2^(-5+n)*(4+2^n-4*n)*n for n>1. - Colin Barker, Oct 26 2015
a(n) = 14*a(n-1) - 76*a(n-2) + 200*a(n-3) - 256*a(n-4) + 128*a(n-5). - Wesley Ivan Hurt, Aug 04 2025

Extensions

More terms from Alois P. Heinz, Oct 26 2015

A159711 Number of permutations of 1..n arranged in a circle with exactly 3 local maxima.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 96, 1904, 23040, 221184, 1858560, 14353152, 104742912, 734769152, 5010432000, 33464217600, 220066480128, 1430279159808, 9212045819904, 58914039332864, 374665295953920, 2371935399837696, 14960708435312640, 94072038170296320, 589975504803594240
Offset: 0

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Column k=3 of A263789.

Programs

  • Magma
    [(1/3)*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n+6*n^2): n in [0..30]]; // G. C. Greubel, Jun 01 2018
  • Mathematica
    Table[(1/3)*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n+6*n^2), {n,0,30}] (* G. C. Greubel, Jun 01 2018 *)
  • PARI
    a(n) = if(n==1, 0, 1/3*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n +6*n^2)) \\ Colin Barker, Oct 26 2015
    
  • PARI
    concat(vector(6), Vec(-16*x^6*(144*x^4-444*x^3+296*x^2-73*x+6)/(
    (2*x-1)^4*(4*x-1)^3*(6*x-1)^2) + O(x^30))) \\ Colin Barker, Oct 26 2015
    

Formula

G.f.: -16*(144*x^4-444*x^3+296*x^2-73*x+6)*x^6 / ((6*x-1)^2 *(4*x-1)^3 *(2*x-1)^4). - Alois P. Heinz, Oct 26 2015
a(n) = 1/3*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n+6*n^2) for n>1. - Colin Barker, Oct 26 2015

Extensions

a(17)-a(24) from Alois P. Heinz, Oct 26 2015

A159712 Number of permutations of 1..n arranged in a circle with exactly 4 local maxima.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2176, 71424, 1372160, 20252672, 255040512, 2891180032, 30447656960, 303926476800, 2914762424320, 27113686958080, 246327423270912, 2196784154673152, 19305427103907840, 167673167523348480, 1442534103145512960, 12315082531044065280
Offset: 0

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Column k=4 of A263789.

Programs

  • Mathematica
    CoefficientList[Series[-128*(34560*x^7 -146880*x^6 +173712*x^5 -97304*x^4 +29808*x^3 -5120*x^2 +462*x-17)*x^8 / ((8*x-1)^2 *(6*x-1)^3 *(4*x-1)^4 *(2*x-1)^5), {x, 0, 50}], x] (* G. C. Greubel, Jun 02 2018 *)
  • PARI
    concat(vector(8), Vec(-128*(34560*x^7 -146880*x^6 +173712*x^5 -97304*x^4 +29808*x^3 -5120*x^2 +462*x-17)*x^8 / ((8*x-1)^2 *(6*x-1)^3 *(4*x-1)^4 *(2*x-1)^5) + O(x^100))) \\ Altug Alkan, Oct 26 2015

Formula

G.f.: -128*(34560*x^7 -146880*x^6 +173712*x^5 -97304*x^4 +29808*x^3 -5120*x^2 +462*x-17)*x^8 / ((8*x-1)^2 *(6*x-1)^3 *(4*x-1)^4 *(2*x-1)^5). - Alois P. Heinz, Oct 26 2015

Extensions

a(16)-a(23) from Alois P. Heinz, Oct 26 2015

A159713 Number of permutations of 1..n arranged in a circle with exactly 5 local maxima.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 79360, 3891712, 108736512, 2283154432, 40155709440, 625974681600, 8946380963840, 119830778347520, 1527173964103680, 18720292422287360, 222492157815029760, 2579416038567051264, 29306002590306140160, 327494389862875791360
Offset: 0

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Column k=5 of A263789.

Programs

  • PARI
    concat(vector(10), Vec(-512*(232243200*x^11 -1275402240*x^10 +2252081664*x^9 -2074564992*x^8 +1174193888*x^7 -439150208*x^6 +112057808*x^5 -19636984*x^4 +2325314*x^3 -177676*x^2 +7899*x -155)*x^10 / ((10*x-1)^2 *(8*x-1)^3 *(6*x-1)^4 *(4*x-1)^5 *(2*x-1)^6) + O(x^100))) \\ Altug Alkan, Oct 26 2015

Formula

G.f.: -512*(232243200*x^11 -1275402240*x^10 +2252081664*x^9 -2074564992*x^8 +1174193888*x^7 -439150208*x^6 +112057808*x^5 -19636984*x^4 +2325314*x^3 -177676*x^2 +7899*x -155)*x^10 / ((10*x-1)^2 *(8*x-1)^3 *(6*x-1)^4 *(4*x-1)^5 *(2*x-1)^6). - Alois P. Heinz, Oct 26 2015

Extensions

a(16)-a(23) from Alois P. Heinz, Oct 26 2015

A159714 Number of permutations of 1..n arranged in a circle with exactly 6 local maxima.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4245504, 290787328, 11134212096, 315250053120, 7373732315136, 151048265662464, 2807359026757632, 48456016702472192, 789426139189739520, 12282937010848530432, 184138764390344687616, 2677761622120892203008
Offset: 0

Views

Author

R. H. Hardin, Apr 20 2009

Keywords

Crossrefs

Column k=6 of A263789.

Programs

  • PARI
    concat(vector(12), Vec(-2048*(24078974976000*x^16 -163737029836800*x^15 +392749501317120*x^14 -517950785912832*x^13 +442017305468928*x^12 -264568164065280*x^11 +116194714660608*x^10 -38443271058176*x^9 +9722233013888*x^8 -1890674565824*x^7 +282315254112*x^6 -32071886064*x^5 +2720304072*x^4 -166678732*x^3 +6962515*x^2 -177256*x +2073)*x^12 / ((12*x-1)^2 *(10*x-1)^3 *(8*x-1)^4 *(6*x-1)^5 *(4*x-1)^6 *(2*x-1)^7) + O(x^100))) \\ Altug Alkan, Oct 26 2015

Formula

G.f.: -2048*(24078974976000*x^16 -163737029836800*x^15 +392749501317120*x^14 -517950785912832*x^13 +442017305468928*x^12 -264568164065280*x^11 +116194714660608*x^10 -38443271058176*x^9 +9722233013888*x^8 -1890674565824*x^7 +282315254112*x^6 -32071886064*x^5 +2720304072*x^4 -166678732*x^3 +6962515*x^2 -177256*x +2073)*x^12 / ((12*x-1)^2 *(10*x-1)^3 *(8*x-1)^4 *(6*x-1)^5 *(4*x-1)^6 *(2*x-1)^7). - Alois P. Heinz, Oct 26 2015

Extensions

a(17)-a(23) from Alois P. Heinz, Oct 26 2015
Showing 1-6 of 6 results.