A334778
Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly k local maxima.
Original entry on oeis.org
1, 0, 1, 0, 4, 2, 0, 18, 66, 6, 0, 72, 1168, 1192, 88, 0, 270, 16220, 61830, 33600, 1480, 0, 972, 202416, 2150688, 3821760, 1268292, 40272, 0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944, 0, 11664, 27517568, 1629254640, 15313310208, 36381368048, 24342647424, 3963672720, 71865728
Offset: 0
Triangle begins:
1;
0, 1;
0, 4, 2;
0, 18, 66, 6;
0, 72, 1168, 1192, 88;
0, 270, 16220, 61830, 33600, 1480;
0, 972, 202416, 2150688, 3821760, 1268292, 40272;
0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944;
...
The T(2,1) = 4 permutations of 1122 with 1 local maximum are 1122, 1221, 2112, 2211.
The T(2,2) = 2 permutations of 1122 with 2 local maxima are 1212, 2121.
The version for permutations of 1..n is
A263789.
-
CircPeaksBySig(sig, D)={
my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
mapput(FC, key, z)); z);
local(FC=Map());
vector(#D, i, my(k=D[i], lev=#sig); if(lev==1, k==1, my(m=sig[lev]); lev*sum(j=1, min(m,k), m*binomial(m-1,j-1)*F(lev-1,k-j,j-1)/j)));
}
Row(n)={ if(n==0, [1], CircPeaksBySig(vector(n,i,2), [0..n])) }
{ for(n=0, 8, print(Row(n))) }
A159710
Number of permutations of 1..n arranged in a circle with exactly 2 local maxima.
Original entry on oeis.org
0, 0, 0, 0, 8, 80, 528, 2912, 14592, 69120, 316160, 1413632, 6223872, 27103232, 117067776, 502456320, 2145517568, 9122349056, 38644678656, 163186343936, 687144960000, 2886107922432, 12094385684480, 50577004298240, 211105074905088, 879606785638400
Offset: 0
-
[0,0] cat [2^(-5+n)*(4+2^n-4*n)*n: n in [2..30]]; // G. C. Greubel, Jun 02 2018
-
LinearRecurrence[{14,-76,200,-256,128},{0,0,0,0,8,80,528},30] (* Harvey P. Dale, Sep 23 2017 *)
Join[{0,0}, Table[2^(-5+n)*(4+2^n-4*n)*n, {n, 2, 30}]] (* G. C. Greubel, Jun 02 2018 *)
-
concat([0, 0, 0, 0], Vec(-8*(2*x^2-4*x+1)*x^4 / ((4*x-1)^2*(2*x -1)^3) + O(x^100))) \\ Altug Alkan, Oct 26 2015
-
a(n) = if(n==1, 0, 2^(-5+n)*(4+2^n-4*n)*n) \\ Colin Barker, Oct 26 2015
A159711
Number of permutations of 1..n arranged in a circle with exactly 3 local maxima.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 96, 1904, 23040, 221184, 1858560, 14353152, 104742912, 734769152, 5010432000, 33464217600, 220066480128, 1430279159808, 9212045819904, 58914039332864, 374665295953920, 2371935399837696, 14960708435312640, 94072038170296320, 589975504803594240
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (32,-444,3504,-17328,55680,-116288,152320,-113664,36864).
-
[(1/3)*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n+6*n^2): n in [0..30]]; // G. C. Greubel, Jun 01 2018
-
Table[(1/3)*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n+6*n^2), {n,0,30}] (* G. C. Greubel, Jun 01 2018 *)
-
a(n) = if(n==1, 0, 1/3*2^(-6+n)*n*(15+3*2^(1+n)+3^n-3*(8+2^n)*n +6*n^2)) \\ Colin Barker, Oct 26 2015
-
concat(vector(6), Vec(-16*x^6*(144*x^4-444*x^3+296*x^2-73*x+6)/(
(2*x-1)^4*(4*x-1)^3*(6*x-1)^2) + O(x^30))) \\ Colin Barker, Oct 26 2015
A159712
Number of permutations of 1..n arranged in a circle with exactly 4 local maxima.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 2176, 71424, 1372160, 20252672, 255040512, 2891180032, 30447656960, 303926476800, 2914762424320, 27113686958080, 246327423270912, 2196784154673152, 19305427103907840, 167673167523348480, 1442534103145512960, 12315082531044065280
Offset: 0
-
CoefficientList[Series[-128*(34560*x^7 -146880*x^6 +173712*x^5 -97304*x^4 +29808*x^3 -5120*x^2 +462*x-17)*x^8 / ((8*x-1)^2 *(6*x-1)^3 *(4*x-1)^4 *(2*x-1)^5), {x, 0, 50}], x] (* G. C. Greubel, Jun 02 2018 *)
-
concat(vector(8), Vec(-128*(34560*x^7 -146880*x^6 +173712*x^5 -97304*x^4 +29808*x^3 -5120*x^2 +462*x-17)*x^8 / ((8*x-1)^2 *(6*x-1)^3 *(4*x-1)^4 *(2*x-1)^5) + O(x^100))) \\ Altug Alkan, Oct 26 2015
A159713
Number of permutations of 1..n arranged in a circle with exactly 5 local maxima.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 79360, 3891712, 108736512, 2283154432, 40155709440, 625974681600, 8946380963840, 119830778347520, 1527173964103680, 18720292422287360, 222492157815029760, 2579416038567051264, 29306002590306140160, 327494389862875791360
Offset: 0
-
concat(vector(10), Vec(-512*(232243200*x^11 -1275402240*x^10 +2252081664*x^9 -2074564992*x^8 +1174193888*x^7 -439150208*x^6 +112057808*x^5 -19636984*x^4 +2325314*x^3 -177676*x^2 +7899*x -155)*x^10 / ((10*x-1)^2 *(8*x-1)^3 *(6*x-1)^4 *(4*x-1)^5 *(2*x-1)^6) + O(x^100))) \\ Altug Alkan, Oct 26 2015
A159714
Number of permutations of 1..n arranged in a circle with exactly 6 local maxima.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4245504, 290787328, 11134212096, 315250053120, 7373732315136, 151048265662464, 2807359026757632, 48456016702472192, 789426139189739520, 12282937010848530432, 184138764390344687616, 2677761622120892203008
Offset: 0
-
concat(vector(12), Vec(-2048*(24078974976000*x^16 -163737029836800*x^15 +392749501317120*x^14 -517950785912832*x^13 +442017305468928*x^12 -264568164065280*x^11 +116194714660608*x^10 -38443271058176*x^9 +9722233013888*x^8 -1890674565824*x^7 +282315254112*x^6 -32071886064*x^5 +2720304072*x^4 -166678732*x^3 +6962515*x^2 -177256*x +2073)*x^12 / ((12*x-1)^2 *(10*x-1)^3 *(8*x-1)^4 *(6*x-1)^5 *(4*x-1)^6 *(2*x-1)^7) + O(x^100))) \\ Altug Alkan, Oct 26 2015
Showing 1-6 of 6 results.
Comments