A159758 Positive numbers y such that y^2 is of the form x^2+(x+79)^2 with integer x.
65, 79, 101, 289, 395, 541, 1669, 2291, 3145, 9725, 13351, 18329, 56681, 77815, 106829, 330361, 453539, 622645, 1925485, 2643419, 3629041, 11222549, 15406975, 21151601, 65409809, 89798431, 123280565, 381236305, 523383611, 718531789
Offset: 1
Examples
(-16, a(1)) = (-16, 65) is a solution: (-16)^2 + (-16+79)^2 = 256+3969 = 4225 = 65^2. (A118676(1), a(2)) = (0, 79) is a solution: 0^2 + (0+79)^2 = 6241 = 79^2. (A118676(3), a(4)) = (161, 289) is a solution: 161^2 + (161+79)^2 = 25921 + 57600 = 83521 = 289^2.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[65,79,101,289,395,541]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 22 2018
-
Mathematica
RecurrenceTable[{a[1]==65,a[2]==79,a[3]==101,a[4]==289,a[5]==395, a[6]== 541, a[n]==6a[n-3]-a[n-6]},a[n],{n,30}] (* or *) LinearRecurrence[ {0,0,6,0,0,-1},{65,79,101,289,395,541},30] (* Harvey P. Dale, Oct 03 2011 *)
-
PARI
{forstep(n=-16, 10000000, [1, 3], if(issquare(2*n^2+158*n+6241, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3) - a(n-6) for n > 6; a(1)=65, a(2)=79, a(3)=101, a(4)=289, a(5)=395, a(6)=541.
G.f.: (1-x)*(65+144*x+245*x^2+144*x^3+65*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 79*A001653(k) for k >= 1.
Comments