A159844 Positive numbers y such that y^2 is of the form x^2+(x+359)^2 with integer x.
325, 359, 401, 1549, 1795, 2081, 8969, 10411, 12085, 52265, 60671, 70429, 304621, 353615, 410489, 1775461, 2061019, 2392505, 10348145, 12012499, 13944541, 60313409, 70013975, 81274741, 351532309, 408071351, 473703905, 2048880445
Offset: 1
Examples
(-36, a(1)) = (-36, 325) is a solution: (-36)^2+(-36+359)^2 = 1296+104329 = 105625 = 325^2. (A130610(1), a(2)) = (0, 359) is a solution: 0^2+(0+359)^2 = 128881 = 359^2. (A130610(3), a(4)) = (901, 1549) is a solution: 901^2+(901+359)^2 = 811801+1587600 = 2399401 = 1549^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[325, 359, 401, 1549, 1795, 2081]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 19 2018
-
Mathematica
t={325,359,401,1549,1795,2081}; Do[AppendTo[t, 6*t[[-3]]-t[[-6]]], {25}]; t CoefficientList[Series[(325+359 x+401 x^2-401 x^3-359 x^4-325 x^5)/(1-6 x^3+x^6),{x,0,30}],x] (* Harvey P. Dale, Feb 16 2011 *) LinearRecurrence[{0,0,6,0,0,-1}, {325, 359, 401, 1549, 1795, 2081}, 50] (* G. C. Greubel, May 19 2018 *)
-
PARI
{forstep(n=-36, 10000000, [1, 3], if(issquare(2*n^2+718*n+128881, &k), print1(k, ",")))}
-
PARI
V=[]; v=[[-323,-325], [-323,325], [0,-359], [-359,359], [-399,-401], [399,401]]; for(n=1,100,u=[]; for(i=1,#v,if(v[i][2]>0, u=concat(u,v[i][2])); t=3*v[i][1]+2*v[i][2]+359; v[i][2]=4*v[i][1]+3*v[i][2]+718; v[i][1]=t); V=concat(V,u)); vecsort(V,,8) \\ Charles R Greathouse IV, Feb 14 2011
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=325, a(2)=359, a(3)=401, a(4)=1549, a(5)=1795, a(6)=2081.
G.f.: (1-x)*(325+684*x+1085*x^2+684*x^3+325*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 359*A001653(k) for k >= 1.
Comments