A159850 Numerator of Hermite(n, 17/22).
1, 17, 47, -7429, -160415, 4464217, 269993839, -1892147821, -489536076223, -4658915114335, 987008017069999, 28053710866880683, -2150502256703365727, -118026514721378720791, 4759029349325350323695, 480777330814562061542723, -9102061914203466628786559
Offset: 0
Examples
Numerators of 1, 17/11, 47/121, -7429/1331, -160415/14641, ...
Links
- Robert Israel, Table of n, a(n) for n = 0..435
- Simon Plouffe, Conjectures of the OEIS, as of June 20, 2018.
Crossrefs
Cf. A001020 (denominators).
Programs
-
Magma
[Numerator((&+[(-1)^k*Factorial(n)*(17/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
-
Maple
f:= gfun:-rectoproc({a(n) = 17*a(n-1)+242*(1-n)*a(n-2), a(0)=1,a(1)=17},a(n),remember): map(f, [$0..40]); # Robert Israel, Dec 07 2017
-
Mathematica
Numerator[Table[HermiteH[n,17/22],{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *) Table[11^n*HermiteH[n, 17/22], {n,0,30}] (* G. C. Greubel, Jul 09 2018 *)
-
PARI
a(n)=numerator(polhermite(n, 17/22)) \\ Charles R Greathouse IV, Jan 29 2016
Formula
D-finite with recurrence a(n) = 17*a(n-1) + 242*(1-n)*a(n-2). - Robert Israel, Dec 07 2017
E.g.f.: exp(17*x - 121*x^2). - Simon Plouffe, Jun 23 2018
From G. C. Greubel, Jun 02 2018: (Start)
a(n) = 11^n * Hermite(n, 17/22).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(17/11)^(n-2*k)/(k!*(n-2*k)!)). (End)