cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A159859 Numerator of Hermite(n, 2/23).

Original entry on oeis.org

1, 4, -1042, -12632, 3256780, 66485744, -16962423224, -489901195808, 123664101613712, 4641180127773760, -1158964855054670624, -53739545172065063296, 13273074802437996468928, 735369564714290029481728, -179616392573875043315708800, -11610759562843564089946190336
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Cf. A159858.

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(4/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
  • Mathematica
    Numerator[Table[HermiteH[n, 2/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    Table[23^n*HermiteH[n, 2/23], {n,0,30}] (* G. C. Greubel, Jul 09 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,2/23)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 23^n * Hermite(n, 2/23).
E.g.f.: exp(4*x-529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/23)^(n-2*k)/(k!*(n-2*k)!)). (End)

A159865 Numerator of Hermite(n, 3/23).

Original entry on oeis.org

1, 6, -1022, -18828, 3130860, 98465256, -15971457864, -720886192272, 113959299787152, 6785336530113120, -1044408433392582624, -78055311088952305344, 11686493481289162746048, 1061109190473073445123712, -154369376198812703738401920, -16643365586480040091602833664
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(6/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
  • Mathematica
    Numerator[Table[HermiteH[n, 3/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    Table[23^n*HermiteH[n, 3/23], {n,0,30}] (* G. C. Greubel, Jul 14 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 3/23)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(6*x - 529*x^2))) \\ G. C. Greubel, Jul 14 2018
    

Formula

From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 23^n * Hermite(n, 3/23).
E.g.f.: exp(6*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/23)^(n-2*k)/(k!*(n-2*k)!)). (End)

A159868 Numerator of Hermite(n, 4/23).

Original entry on oeis.org

1, 8, -994, -24880, 2955916, 128939488, -14605279736, -935350107712, 100683900863120, 8722274518579328, -888933907869994016, -99393135669529242368, 9550267734434756419264, 1338297392335821312458240, -120648003280729069290891136, -20788045001524017834458579968
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(8/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
  • Mathematica
    Numerator[Table[HermiteH[n, 4/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    Table[19^n*HermiteH[n, 4/23], {n,0,30}] (* G. C. Greubel, Jul 14 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 4/23)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(8*x - 529*x^2))) \\ G. C. Greubel, Jul 14 2018
    

Formula

From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 23^n * Hermite(n, 4/23).
E.g.f.: exp(8*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/23)^(n-2*k)/(k!*(n-2*k)!)). (End)

A159871 Numerator of Hermite(n, 7/23).

Original entry on oeis.org

1, 14, -862, -41692, 2152300, 206572744, -8493648584, -1430234859088, 42880673385872, 12705837274723040, -230428050134150624, -137653751068447871936, 754569132502974755008, 1758215991420055828669568, 14236680031434866820993920, -25843381744473778798759726336
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(14/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
  • Mathematica
    Numerator[Table[HermiteH[n, 7/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    Table[23^n*HermiteH[n, 7/23], {n,0,30}] (* G. C. Greubel, Jul 14 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 7/23)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(14*x - 529*x^2))) \\ G. C. Greubel, Jul 14 2018
    

Formula

From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 23^n * Hermite(n, 7/23).
E.g.f.: exp(14*x - 529*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(14/23)^(n-2*k)/(k!*(n-2*k)!)). (End)
Showing 1-4 of 4 results.