cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A130646 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+727)^2 = y^2.

Original entry on oeis.org

0, 56, 1925, 2181, 2465, 13056, 14540, 16188, 77865, 86513, 96117, 455588, 505992, 561968, 2657117, 2950893, 3277145, 15488568, 17200820, 19102356, 90275745, 100255481, 111338445, 526167356, 584333520, 648929768, 3066729845
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 20 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+727, y).
Corresponding values y of solutions (x, y) are in A159893.
For the generic case x^2+(x+p)^2 = y^2 with p = m^2-2 a (prime) number > 7 in A028871, see A118337.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (731+54*sqrt(2))/727 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1304787+843542*sqrt(2))/727^2 for n mod 3 = 0.

Crossrefs

Cf. A159893, A028871, A118337, A118675, A118676, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A159894 (decimal expansion of (731+54*sqrt(2))/727), A159895 (decimal expansion of (1304787+843542*sqrt(2))/727^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,56,1925,2181,2465,13056,14540},40] (* or *) RecurrenceTable[{a[1]==0,a[2]==56,a[3]==1925,a[4]==2181,a[5] == 2465, a[6] == 13056, a[n] ==6a[n-3]-a[n-6]+1454},a,{n,40}] (* Harvey P. Dale, Jan 16 2013 *)
  • PARI
    {forstep(n=0, 100000000, [1, 3], if(issquare(2*n^2+1454*n+528529), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1454 for n > 6; a(1)=0, a(2)=56, a(3)=1925, a(4)=2181, a(5)=2465, a(6)=13056.
G.f.: x*(56+1869*x+256*x^2-52*x^3-623*x^4-52*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 727*A001652(k) for k >= 0.

Extensions

Edited and one term added by Klaus Brockhaus, Apr 30 2009

A159893 Positive numbers y such that y^2 is of the form x^2+(x+727)^2 with integer x.

Original entry on oeis.org

677, 727, 785, 3277, 3635, 4033, 18985, 21083, 23413, 110633, 122863, 136445, 644813, 716095, 795257, 3758245, 4173707, 4635097, 21904657, 24326147, 27015325, 127669697, 141783175, 157456853, 744113525, 826372903, 917725793
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

(-52, a(1)) and (A130646(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+727)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (731+54*sqrt(2))/727 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1304787+843542*sqrt(2))/727^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p= m^2 -2 a prime number in A028871, m>=5, the x values are given by the sequence defined by: a(n)= 6*a(n-3) -a(n-6) +2*p with a(1)= 0, a(2)= 2*m +2, a(3)= 3*m^2 -10*m +8, a(4)= 3*p, a(5)= 3*m^2 +10*m +8, a(6)= 20*m^2 -58*m +42. Y values are given by the sequence defined by: b(n)= 6*b(n-3) -b(n-6) with b(1)= p, b(2)= m^2 +2*m +2, b(3)= 5*m^2 -14*m +10, b(4)= 5*p, b(5)= 5*m^2 +14*m +10, b(6)= 29*m^2 -82*m +58. - Mohamed Bouhamida, Sep 09 2009

Examples

			(-52, a(1)) = (-52, 677) is a solution: (-52)^2+(-52+727)^2 = 2704+455625 = 458329 = 677^2.
(A130646(1), a(2)) = (0, 727) is a solution: 0^2+(0+727)^2 = 528529 = 727^2.
(A130646(3), a(4)) = (1925, 3277) is a solution: 1925^2+(1925+727)^2 = 3705625+7033104 = 10738729 = 3277^2.
		

Crossrefs

Cf. A130646, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A159894 (decimal expansion of (731+54*sqrt(2))/727), A159895 (decimal expansion of (1304787+843542*sqrt(2))/727^2).

Programs

  • Magma
    I:=[677,727,785,3277,3635,4033]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..30]]; // G. C. Greubel, May 17 2018
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {677,727,785,3277,3635,4033}, 50] (* G. C. Greubel, May 17 2018 *)
  • PARI
    {forstep(n=-52, 10000000, [1, 3], if(issquare(2*n^2+1454*n+528529, &k), print1(k, ",")))}
    

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=677, a(2)=727, a(3)=785, a(4)=3277, a(5)=3635, a(6)=4033.
G.f.: (1-x)*(677+1404*x+2189*x^2+1404*x^3+677*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 727*A001653(k) for k >= 1.

A159895 Decimal expansion of (1304787+843542*sqrt(2))/727^2.

Original entry on oeis.org

4, 7, 2, 5, 8, 2, 4, 9, 5, 3, 4, 6, 7, 6, 9, 1, 1, 6, 4, 8, 2, 9, 6, 9, 5, 4, 5, 6, 2, 5, 1, 7, 8, 0, 1, 9, 8, 6, 1, 3, 1, 6, 6, 2, 6, 5, 4, 2, 5, 7, 7, 8, 9, 6, 6, 7, 9, 9, 5, 5, 6, 4, 6, 6, 2, 3, 7, 7, 6, 2, 6, 5, 1, 3, 3, 3, 9, 5, 2, 7, 1, 7, 3, 8, 3, 4, 0, 4, 8, 8, 6, 9, 2, 5, 4, 2, 4, 0, 1, 1, 8, 2, 9, 1, 3
Offset: 1

Views

Author

Klaus Brockhaus, Apr 30 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (1304787+843542*sqrt(2))/727^2 for n mod 3 = 0, b = A130646.
lim_{n -> infinity} b(n)/b(n-1) = (1304787+843542*sqrt(2))/727^2 for n mod 3 = 1, b = A159893.

Examples

			(1304787+843542*sqrt(2))/727^2 = 4.72582495346769116482...
		

Crossrefs

Cf. A130646, A159893, A002193 (decimal expansion of sqrt(2)), A159894 (decimal expansion of (731+54*sqrt(2))/727).

Programs

  • Magma
    (1304787 +843542*Sqrt(2))/727^2; // G. C. Greubel, May 17 2018
  • Mathematica
    RealDigits[(1304787+843542*Sqrt[2])/727^2, 10, 100][[1]] (* G. C. Greubel, May 17 2018 *)
  • PARI
    (1304787 +843542*sqrt(2))/727^2 \\ G. C. Greubel, May 17 2018
    

Formula

Equals (1354 +623*sqrt(2))/(1354 -623*sqrt(2)).
Equals (3 +2*sqrt(2))*(27 -sqrt(2))^2/(27 +sqrt(2))^2.
Showing 1-3 of 3 results.