A159896 Positive numbers y such that y^2 is of the form x^2+(x+839)^2 with integer x.
785, 839, 901, 3809, 4195, 4621, 22069, 24331, 26825, 128605, 141791, 156329, 749561, 826415, 911149, 4368761, 4816699, 5310565, 25463005, 28073779, 30952241, 148409269, 163625975, 180402881, 864992609, 953682071, 1051465045
Offset: 1
Examples
(-56, a(1)) = (-56, 785) is a solution: (-56)^2+(-56+839)^2 = 3136+613089 = 616225 = 785^2. (A130647(1), a(2)) = (0, 839) is a solution: 0^2+(0+839)^2 = 703921 = 839^2. (A130647(3), a(4)) = (2241, 3809) is a solution: 2241^2+(2241+839)^2 = 5022081+9486400 = 14508481 = 3809^2.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..3895
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Magma
I:=[785,839,901,3809,4195,4621]; [n le 6 select I[n] else 6*Self(n-3) -Self(n-6): n in [1..30]]; // G. C. Greubel, May 17 2018
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1}, {785,839,901,3809,4195,4621}, 30] (* Harvey P. Dale, Mar 03 2013 *)
-
PARI
{forstep(n=-56, 10000000, [1, 3], if(issquare(2*n^2+1678*n+703921, &k), print1(k, ",")))}
-
PARI
is(n,p=839)=for(m=sqrtint((max(n,984)^2-p^2)\2)-p\2,n,m^2+(m+p)^2
A159896(n)=(matrix(6,6,i,j,if(i<6,i+1==j,j==4,6,j==1,-1))^n*[785,839,901,3809,4195,4621]~)[1] \\ M. F. Hasler, May 17 2018
Formula
a(n) = 6*a(n-3) -a(n-6) for n > 6; a(1)=785, a(2)=839, a(3)=901, a(4)=3809, a(5)=4195, a(6)=4621.
G.f.: (1-x)*(785+1624*x+2525*x^2+1624*x^3+785*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 839*A001653(k) for k >= 1.
Comments