cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A160121 First differences of A160120.

Original entry on oeis.org

1, 3, 3, 9, 3, 9, 9, 21, 9, 9, 9, 21, 15, 21, 27, 51, 27, 9, 9, 21, 15, 21, 27, 51, 33, 21, 27, 51, 51, 57, 69, 117, 81, 21, 9, 21, 15, 21, 27, 51, 33, 21, 27, 51, 51, 57, 69, 117, 87, 33, 27, 51, 51, 57, 75, 129, 117, 75, 69, 117, 135, 141, 171, 279, 231, 69, 9, 21, 15, 21, 27
Offset: 1

Views

Author

Omar E. Pol, May 02 2009

Keywords

Comments

Number of Y-toothpicks added at n-th stage to the Y-toothpick structure of A160120.
For a simpler version, see A151710. - Omar E. Pol, Dec 18 2012

Examples

			Contribution from _Omar E. Pol_, Jun 18 2009: (Start)
May be written as a triangle:
1,
3,
3,
9,
3,9,
9,21,9,9,
9,21,15,21,27,51,27,9,
9,21,15,21,27,51,33,21,27,51,51,57,69,117,81,21,
9,21,15,21,27,51,33,21,27,51,51,57,69,117,87,33,27,51,51,57,75,129,117,75,69,117,135,141,171,279,231,69;
Rows converge to A161326.
(End)
Contribution from _Omar E. Pol_, Dec 18 2012: (Start):
Also this sequence may be written as another triangle (according to the structure of triangle A151710):
1;
3;
3,  9;
3,  9,9,21;
9,  9,9,21,15,21,27,51;
27, 9,9,21,15,21,27,51,33,21,27,51,51,57,69,117;
81,21,9,21,15,21,27,51,33,21,27,51,51,57,69,117,87,33,27,51,51,57,75,129,117,75,69,117,135,141,171,279;
(End)
		

Crossrefs

Programs

  • Mathematica
    YTPFunc[lis_, step_] := With[{out = Extract[lis, {{1, 2}, {2, 1}, {-1, -1}}], in = lis[[2, 2]]}, Which[in == 1, 3, in == 0 && Count[out, 1] >= 2, 2, in == 0 && Count[out, 1] == 1, 1, True, in]]; A160121[n_] := Count[CellularAutomaton[{YTPFunc, {}, {1, 1}}, {{{1}}, 0}, {{{n}}}], 1, 2] (* JungHwan Min, Jan 28 2016 *)
    A160121[n_] := Count[CellularAutomaton[{13390417258775213635414055181254541831894674613399006361662885886563211940509571858857491972104491013971547937418035084866785430974106432144737472376143620, 4, {{-1, 0}, {0, -1}, {0, 0}, {1, 1}}}, {{{1}}, 0}, {{{n}}}], 1, 2] (* JungHwan Min, Jan 28 2016 *)

Extensions

More terms from David Applegate, Jun 14 2009

A161207 First differences of A161206.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 12, 12, 18, 24, 30, 30, 28, 30, 20, 12, 18, 26, 34, 42, 50, 56, 54, 44, 48, 64, 82, 80, 68, 66, 36, 12, 18, 26, 34, 42, 50, 58, 58, 54, 66, 90, 114, 126, 122, 120, 102, 60, 48, 70, 94, 118, 142, 160, 162, 136, 130, 160, 204, 198, 160, 142, 68, 12
Offset: 1

Views

Author

Omar E. Pol, Jun 08 2009

Keywords

Comments

Number of V-toothpicks added to the V-toothpick structure at the n-th round.

Crossrefs

Extensions

More terms from R. J. Mathar, Jan 21 2010

A160172 T-toothpick sequence (see Comments lines for definition).

Original entry on oeis.org

0, 1, 4, 9, 18, 27, 36, 49, 74, 95, 104, 117, 142, 167, 192, 229, 302, 359, 368, 381, 406, 431, 456, 493, 566, 627, 652, 689, 762, 835, 908, 1017, 1234, 1399, 1408, 1421, 1446, 1471, 1496, 1533, 1606, 1667, 1692, 1729, 1802, 1875, 1948, 2057, 2274, 2443, 2468
Offset: 0

Views

Author

Omar E. Pol, Jun 01 2009

Keywords

Comments

A T-toothpick is formed from three toothpicks of equal length, in the shape of a T. There are three endpoints. We call the middle of the top toothpick the pivot point.
We start at round 0 with no T-toothpicks.
At round 1 we place a T-toothpick anywhere in the plane.
At round 2 we place three other T-toothpicks.
And so on...
The rule for adding a new T-toothpick is the following. A new T-toothpick is added at any exposed endpoint, with the pivot point touching the endpoint and so that the crossbar of the new toothpick is perpendicular to the exposed end.
The sequence gives the number of T-toothpicks after n rounds. A160173 (the first differences) gives the number added at the n-th round.
See the entry A139250 for more information about the toothpick process and the toothpick propagation.
On the infinite square grid a T-toothpick can be represented as a square polyedge with three components from a central point: two consecutive components on the same straight-line and a centered orthogonal component.
If the T-toothpick has three components then at the n-th round the structure is a polyedge with 3*a(n) components.
From Omar E. Pol, Mar 26 2011: (Start)
For formula and more information see the Applegate-Pol-Sloane paper, chapter 11, "T-shaped toothpicks". See also A160173.
Also, this sequence can be illustrated using another structure in which every T-toothpick is replaced by an isosceles right triangle. (End)
The structure is very distinct but the graph is similar to the graphs from the following sequences: A147562, A160164, A162795, A169707, A187220, A255366, A256260, at least for the known terms from Data section. - Omar E. Pol, Nov 24 2015
Shares with A255366 some terms with the same index, for example the element a(43) = 1729, the Hardy-Ramanujan number. - Omar E. Pol, Nov 25 2015

Crossrefs

Programs

Formula

a(n) = 2*A151920(n) + 2*A151920(n-1) + n + 1. - Charlie Neder, Feb 07 2019

Extensions

Edited and extended by N. J. A. Sloane, Jan 01 2010

A172311 First differences of A172310.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 12, 14, 14, 18, 18, 20, 24, 24, 38, 34, 42, 34, 26, 28, 32, 38, 52, 54, 64, 58, 68, 60, 60, 50, 66, 70, 70, 74, 50, 52, 60, 54, 64, 66, 84, 88, 116, 106, 132, 100, 136, 126, 140, 106, 118, 100, 122, 106, 138, 114, 138, 132, 152, 156, 176, 158, 190, 166, 158, 154, 98, 88, 132, 82, 124, 94, 112
Offset: 0

Views

Author

Omar E. Pol, Jan 31 2010

Keywords

Comments

Number of L-toothpicks added to the L-toothpick structure of A172310 at the n-th stage.

Crossrefs

Extensions

More terms from Nathaniel Johnston, Nov 15 2010
Corrected by David Applegate and Omar E. Pol; more terms beyond a(22) from David Applegate, Mar 26 2016

A161331 First differences of A161330.

Original entry on oeis.org

0, 2, 6, 6, 6, 18, 6, 18, 18, 18, 30, 18, 30, 42, 6, 18, 18, 30, 54, 30, 78, 42, 54, 78, 42, 66, 78, 18, 42, 42, 54, 90, 66, 126, 90, 90, 102, 66, 78, 90, 90, 90, 54, 66, 114, 78, 126, 126, 102, 102, 138, 102, 162, 102, 114, 162, 126, 162, 114, 102, 102, 126, 186, 186, 150, 138, 126, 162, 162, 186, 198, 114, 114, 162
Offset: 0

Views

Author

Omar E. Pol, Jun 07 2009

Keywords

Comments

Number of E-toothpicks added to the snowflake structure at n-th round.

Crossrefs

Extensions

More terms from David Applegate, Dec 13 2012

A162201 First differences of A162200.

Original entry on oeis.org

0, 2, 0, 3, -1, 3, -1, 3, -3, 4, -2, 5, -1, 3, -3, 6, -2, 4, -3, 3, -2, 5, -3, 7, -4, 3, -1, 3, -1, 9, -7, 5, -2, 6, -4, 4, -4, 5, -3, 6, -2, 6, -4, 3, -1, 7, -10, 8, -1, 3, -3, 4, -4, 8, -4, 6, -2, 4, -3, 3, -4, 12, -7, 3, -1, 9, -8, 8, -4, 3, -3, 7, -5, 6, -3, 5, -5, 6, -4, 9, -4, 6, -4, 4, -3
Offset: 1

Views

Author

Omar E. Pol, Jun 28 2009

Keywords

Comments

The absolute value of a(n) is also the length of the n-th vertical edge in the graph of the "mountain path" function for prime numbers.
See A162200 for the length of the n-th horizontal component.

Crossrefs

Programs

Formula

From R. J. Mathar, Jul 15 2009: (Start)
a(n) = A052288(n-1) if n >= 2, n even.
a(n) = 2 - A052288(n-1) if n >= 3, n odd. (End)

Extensions

Edited by Omar E. Pol, Jul 02 2009
More terms from R. J. Mathar, Jul 15 2009

A161329 First differences of A161328.

Original entry on oeis.org

1, 3, 5, 7, 13, 11, 17, 15, 21, 23, 25, 27, 33, 27, 25, 15, 25, 35, 41, 55, 53, 59, 61, 59, 65, 63, 57, 47, 37, 47, 65, 71, 97, 95, 105, 95, 89, 83, 81, 87, 93, 79, 73, 79, 89, 107, 113, 119, 113, 115, 117, 135, 125, 127, 129, 135, 153, 135
Offset: 1

Views

Author

Omar E. Pol, Jun 07 2009

Keywords

Comments

Number of E-Toothpicks added to the E-Toothpick structure at the n-th round.

Crossrefs

Extensions

a(8) corrected and more terms added by R. J. Mathar, Jan 21 2010

A294963 a(n) is the number of elements added at n-th stage in the structure of the finite cellular automaton of A294962.

Original entry on oeis.org

1, 4, 8, 8, 12, 20, 16, 8, 24, 16
Offset: 1

Views

Author

Omar E. Pol, Feb 10 2018

Keywords

Examples

			The finite sequence can be written as an array of four columns as shown below:
   1,  4,  8, 8;
  12, 20, 16, 8;
  24, 16.
The first column gives the number of toothpicks of length 2.
The second column gives the number of D-toothpicks.
The third column gives the number of toothpicks of length 1.
The fourth column gives the number of T-toothpicks.
The sequence contains exactly 10 terms.
		

Crossrefs

Cf. A294962.
Cf. A139251 (toothpicks), A160173 (T-toothpicks), A194701 (D-toothpicks), A220501.
For other hybrid cellular automata, see A289841, A290221, A294021, A294981.

A199111 a(n) = 8*3^n + 1.

Original entry on oeis.org

9, 25, 73, 217, 649, 1945, 5833, 17497, 52489, 157465, 472393, 1417177, 4251529, 12754585, 38263753, 114791257, 344373769, 1033121305, 3099363913, 9298091737, 27894275209, 83682825625, 251048476873, 753145430617, 2259436291849, 6778308875545, 20334926626633, 61004779879897
Offset: 0

Views

Author

Vincenzo Librandi, Nov 03 2011

Keywords

Crossrefs

Cf. A000244, A005051, A160173. - Omar E. Pol, Nov 18 2011
Cf. A198644.

Programs

  • Magma
    [8*3^n+1: n in [0..30]];

Formula

a(n) = 3*a(n-1) - 2.
a(n) = 4*a(n-1) - 3*a(n-2).
G.f.: (9-11*x)/((1-x)*(1-3*x)). - Bruno Berselli, Nov 03 2011
a(n) = 8*A000244(n) + 1 = A005051(n) + 1. - Omar E. Pol, Nov 18 2011
From Elmo R. Oliveira, May 07 2025: (Start)
E.g.f.: exp(x)*(8*exp(2*x) + 1).
a(n) = A198644(n) + 2. (End)

A299771 a(n) is the number of elements added at n-th stage in the structure of the finite cellular automaton of A299770.

Original entry on oeis.org

1, 4, 8, 8, 12, 16, 16, 8, 24, 8
Offset: 1

Views

Author

Omar E. Pol, Mar 20 2018

Keywords

Comments

The word of this cellular automaton is abcd. For more information see A296612.

Examples

			The finite sequence can be written as an array of four columns as shown below:
   1,  4,  8, 8;
  12, 16, 16, 8;
  24,  8.
The first column gives the number of toothpicks of length 2.
The second column gives the number of D-toothpicks of length sqrt(2).
The third column gives the number of toothpicks of length 1.
The fourth column gives the number of T-toothpicks.
The sequence contains exactly 10 terms.
		

Crossrefs

Very similar to A294963.
Cf. A139251 (toothpicks), A160173 (T-toothpicks), A194701 (D-toothpicks), A220501.
For other hybrid cellular automata, see A289841, A290221, A294021, A294981.
Showing 1-10 of 16 results. Next