A115135 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+617)^2 = y^2.
0, 108, 1407, 1851, 2407, 9768, 12340, 15568, 58435, 73423, 92235, 342076, 429432, 539076, 1995255, 2504403, 3143455, 11630688, 14598220, 18322888, 67790107, 85086151, 106795107, 395111188, 495919920, 622448988, 2302878255, 2890434603
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,6,-6,0,-1,1).
Crossrefs
Programs
-
Magma
I:=[0,108,1407,1851,2407,9768,12340]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
-
Mathematica
LinearRecurrence[{1,0,6,-6,0,-1,1}, {0,108,1407,1851,2407,9768,12340}, 50] (* G. C. Greubel, May 04 2018 *)
-
PARI
{forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1234*n+380689), print1(n, ",")))}
-
PARI
x='x+O('x^30); Vec(x*(108 +1299*x +444*x^2 -92*x^3 -433*x^4 -92*x^5)/((1-x)*(1 -6*x^3 +x^6))) \\ G. C. Greubel, May 04 2018
Formula
a(n) = 6*a(n-3) -a(n-6) +1234 for n > 6; a(1)=0, a(2)=108, a(3)=1407, a(4)=1851, a(5)=2407, a(6)=9768.
G.f.: x*(108 +1299*x +444*x^2 -92*x^3 -433*x^4 -92*x^5)/((1-x)*(1 -6*x^3 +x^6)).
a(3*k+1) = 617*A001652(k) for k >= 0.
Extensions
Edited and two terms added by Klaus Brockhaus, May 18 2009
Comments