cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A179334 Squares that are the sum of three positive Fibonacci numbers.

Original entry on oeis.org

4, 9, 16, 25, 36, 49, 64, 81, 100, 144, 256, 289, 324, 400, 529, 576, 625, 1024, 1089, 1225, 1369, 1600, 2209, 3249, 7396, 12544, 15129, 19321, 46656, 103684, 710649, 1347921, 2178576, 4870849, 14930496, 24990001, 33385284, 228826129, 1568397609, 10749957124
Offset: 1

Views

Author

Carmine Suriano, Jan 12 2011

Keywords

Comments

There are infinitely many such numbers, because L_{2n}^2 = F_{4n+1} + F_{4n-1} + F_3 (observation of Ingrid Vukusic). - Jeffrey Shallit, Aug 19 2025
Squares k > 1 such that A007895(k) <= 3. - Robert Israel, Aug 20 2025

Examples

			a(5) = 36 = 1+1+34 = Fib(1)+Fib(2)+Fib(9).
		

Crossrefs

Programs

  • Maple
    phi:= 1/2 + sqrt(5)/2:
    fib:= combinat:-fibonacci:
    invfib := proc(x::posint)
      local q, n;
      q:= evalf((ln(x+1/2) + ln(5)/2)/ln(phi));
      n:= floor(q);
      if fib(n) <= x then
        while fib(n+1) <= x do
          n := n+1
        end do
      else
        while fib(n) > x do
          n := n-1
        end do
      end if;
      n
    end:
    g:= proc(n)  local ct,x,y,R;
      ct:= 0; x:= n^2; R:=NULL;
      while x > 0 do
        y:= invfib(x);
        ct:= ct+1;
        if ct = 4 then return [false, max(n+1,isqrt(fib(R[1])+fib(R[2]) + fib(R[3]+1)))]  fi;
        R:= R, y;
        x:= x - fib(y)
      od;
      if ct < 3 then [true,n+1] else [true, max(n+1,isqrt(fib(R[1])+fib(R[2])+fib(R[3]+1)))] fi
    end proc:
    R:= NULL: count:= 0:
    n:= 2:
    while count < 40 do
      V:= g(n);
      if V[1] then R:= R, n^2; count:= count+1; fi;
      n:= V[2];
    od:
    R; # Robert Israel, Aug 20 2025
  • Mathematica
    f=Fibonacci[Range[40]]; Select[Union[Flatten[Outer[Plus, f, f, f]]], #Harvey P. Dale, Apr 29 2015 *)
Showing 1-1 of 1 results.