cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A160267 Minimum of A122458(n) and A160266(n).

Original entry on oeis.org

2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 17, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 9, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 8, 1, 1, 1, 5, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Vladimir Shevelev, May 07 2009, May 11 2009

Keywords

Comments

Let f be the operation defined in A159885, namely f(2n+1) = A075677(n+1), and f^k its k-fold iteration.
Then a(n) is the smallest k such that either f^k(2n+1)< 2n+1 or A006694((f^k(2n+1)-1)/2) < A006694(n).

Crossrefs

Programs

  • PARI
    f(n) = ((3*((n-1)/2))+2)/A006519((3*((n-1)/2))+2); \\ Defined for odd n only. Cf. A075677.
    A006519(n) = (1<A006694(n) = (sumdiv(2*n+1, d, eulerphi(d)/znorder(Mod(2, d))) - 1); \\ From A006694
    A160267(n) = { my(w=A006694(n), u = (n+n+1), k=0); while((u >= (n+n+1))&&(A006694((u-1)/2) >= w), k++; u = f(u)); (k); }; \\ Antti Karttunen, Sep 22 2018

Extensions

a(47) corrected and more terms appended by R. J. Mathar, Aug 08 2010

A159885 For n >= 1, let f(2n+1) = (3n+2)/A006519(3n+2) and let f^k be the k-th iteration of f. Then a(n) is the least k such that A000120(f^k(2n+1)) <= A000120(n).

Original entry on oeis.org

2, 1, 2, 6, 1, 1, 2, 3, 3, 1, 1, 4, 1, 1, 2, 8, 2, 3, 3, 39, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 2, 8, 5, 2, 2, 41, 3, 2, 3, 5, 5, 1, 1, 1, 1, 1, 1, 42, 2, 1, 4, 6, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 44, 5, 5, 5, 31, 5, 2, 2, 41, 7, 1, 3, 3, 3, 2, 3, 34, 3, 5, 13, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 42, 8, 1, 2, 4, 1
Offset: 1

Views

Author

Vladimir Shevelev, Apr 25 2009, Apr 27 2009

Keywords

Comments

Conjecture: a(n) exists for every n >= 1. It is easy to see that this conjecture is equivalent to the well-known Collatz 3x+1 conjecture.

Crossrefs

Programs

  • PARI
    A006519(n) = (1<A006519((3*((n-1)/2))+2); \\ Defined only for odd n. Cf. A075677.
    A159885(n) = { my(w=hammingweight(n), n = (n+n+1)); for(k=1,oo,n = f(n); if(hammingweight(n) <= w, return(k))); }; \\ Antti Karttunen, Sep 22 2018

Extensions

Edited by N. J. A. Sloane, May 03 2009
a(25) corrected, sequence extended by R. J. Mathar, May 15 2009

A160322 a(n) = min(A160198(n), A160267(n)).

Original entry on oeis.org

2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Vladimir Shevelev, May 08 2009, May 11 2009

Keywords

Comments

Let f be defined as in A159885. Then a(n) is the least k such that either f^k(2n+1))<2n+1 or A000120(f^k(2n+1)) < A000120(2n+1) or A006694((f^k(2n+1)-1)/2) < A006694(n).
In connection with A160198, A160267, A160322 we pose a new (3x+1)-problem: does there exist a finite number of sequences A_i(n), i=1,...,T, such that: 1) A_i(0)=0 and A_i(n)>0 for n>=1; 2) if B_i(n) denotes the least k for which A_i(n)>A_i((f^k(2n+1)-1)/2), then B(n)=min_{i=1,...,T}B_i(n)=1 for every n>=1? Note that this problem is weaker than (3x+1)-Collatz problem. Indeed, if the Collatz conjecture is true, then there exist nonnegative sequences A(n) for which A(0)=0 and A(n)>A((f(2n+1)-1)/2) for every n>=1 (see A160348). - Vladimir Shevelev, May 15 2009

Crossrefs

Programs

  • PARI
    f(n) = ((3*((n-1)/2))+2)/A006519((3*((n-1)/2))+2); \\ Defined for odd n only. Cf. A075677.
    A006519(n) = (1<A006694(n) = (sumdiv(2*n+1, d, eulerphi(d)/znorder(Mod(2, d))) - 1); \\ From A006694
    A160322(n) = { my(v=A006694(n), u = (n+n+1), w = hammingweight(u), k=0); while((u >= (n+n+1))&&(hammingweight(u) >= w)&&(A006694((u-1)/2) >= v), k++; u = f(u)); (k); }; \\ Antti Karttunen, Sep 25 2018

Formula

a(n) = min(A122458(n), A159885(n), A160266(n)). - Antti Karttunen, Sep 25 2018

Extensions

a(1) corrected and sequence extended by Antti Karttunen, Sep 25 2018

A160268 Odd numbers k for which A006694( (k-1)/2 )< A006694( (A000265(3k+1)-1)/2 ) .

Original entry on oeis.org

11, 23, 37, 41, 43, 59, 61, 79, 83, 97, 103, 107, 113, 121, 139, 143, 147, 149, 163, 167, 169, 171, 173, 177, 181, 183, 191, 193, 199, 201, 203, 227, 237, 243, 249, 251, 263, 271, 283, 287, 289, 293, 303, 313, 317, 321, 323, 347, 351, 353, 355, 359, 363, 367, 373, 379
Offset: 1

Views

Author

Vladimir Shevelev, May 07 2009

Keywords

Comments

Conjecture: For every k in the sequence, the number k^2 is in the sequence as well.
Composite numbers in the sequence which are not perfect squares are 143, 147, 171, 183 etc. [R. J. Mathar, May 16 2009]

Crossrefs

Extensions

Edited and extended by R. J. Mathar, May 16 2009

A160364 Let f be defined as in A159885 and f^k be the k-th iteration of f. Then a(n) is the least k for which either {A000120(f^k(2n+1)) < A000120(2n+1)}&{A006694((f^k(2n+1)-1)/2)<=A006694(n)} or {A000120(f^k(2n+1))<=A000120(2n+1)}&{A006694((f^k(2n+1)-1)/2) < A006694(n)}.

Original entry on oeis.org

2, 1, 1, 5, 3, 1, 1, 2, 5, 1, 2, 1, 1, 1, 1, 5, 2, 5, 3, 33, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 7, 1, 5, 10, 1, 1, 2, 5, 5, 1, 1
Offset: 1

Views

Author

Vladimir Shevelev, May 11 2009

Keywords

Comments

Using induction, one can prove that the Collatz (3x+1)-conjecture follows from the finiteness of a(n) for every n.

Examples

			Beginning with n=1, we have f(2n+1)=f(3)=5. Here A000120(3)=A000120(5)=2 and A006694((3-1)/2)= A006694((5-1)/2)=1. None of values did not become less than. Therefore a(1)>1. Since f(5)=1 and A000120(1)=1 and A006694(0)=0, then a(2)=2.
		

Crossrefs

A160558 a(n) is the ordinal number of series in which the value of A160348(n) is defined.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 2, 4, 2, 5, 6, 4, 7, 8, 5, 8, 9, 4, 10, 11, 8, 12, 13, 8, 12, 14, 4, 15, 16, 11, 8, 17, 12, 11, 18, 8, 19, 20, 14, 21, 22, 15, 20, 23, 11, 8, 24, 17, 25
Offset: 0

Views

Author

Vladimir Shevelev, May 19 2009

Keywords

Comments

a(n)>=a((f(2n+1)-1)/2), where f is defined as in A159885. E.g., for n=4, we have a(4)=3>a(((9*3+1)/4-1)/2)=a(3)=2.

Examples

			Put a(0)=0. According to example to A160348, in the first series we find A160348(1) and A160348(2), therefore a(1)=a(2)=1. In the second series we find A160348(3), A160348(5), A160348(6) and A160348(8), thus a(3)=a(5)=a(6)=a(8)=2.
		

Crossrefs

Showing 1-6 of 6 results.