cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160302 Numerator of Hermite(n, 4/31).

Original entry on oeis.org

1, 8, -1858, -45616, 10348300, 433482208, -95979305336, -5766751265344, 1245171563867792, 98630939966871680, -20749930192050092576, -2061686107699674430208, 422201535258725661800128, 50928340670055096352718336, -10141700834614078614916251520
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 8/31, -1858/961, -45616/29791, 10348300/923521, ...
		

Crossrefs

Cf. A009975 (denominators).

Programs

  • GAP
    List(List([0..15],n->Sum([0..Int(n/2)],k->(-1)^k*Factorial(n)*(8/31)^(n-2*k)/(Factorial(k)*Factorial(n-2*k)))),NumeratorRat); # Muniru A Asiru, Jul 12 2018
  • Magma
    I:=[1,8]; [n le 2 select I[n] else 8*Self(n-1)-1922*(n-2)*Self(n-2): n in [1..15]]; // Vincenzo Librandi, Mar 28 2018
    
  • Maple
    seq(orthopoly[H](n,4/31)*31^n, n=0..40); # Robert Israel, Mar 27 2018
  • Mathematica
    Numerator[Table[HermiteH[n, 4/31], {n, 0, 40}]] (* Vincenzo Librandi, Mar 28 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 4/31)) \\ Charles R Greathouse IV, Jan 29 2016
    

Formula

From Robert Israel, Mar 27 2018: (Start)
a(n+2) = 8*a(n+1) - 1922*(n+1)*a(n).
E.g.f.: exp(-961*x^2+8*x). (End)
a(n) = 31^n * Hermite(n, 4/31). - G. C. Greubel, Jul 12 2018