cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160323 Continued fraction for (Gamma(1/6)*Gamma(1/3))/(3*sqrt(Pi)).

Original entry on oeis.org

2, 1, 4, 8, 1, 27, 1, 19, 1, 25, 3, 6, 4, 1, 37, 1, 1, 7, 1, 75, 1, 13, 1, 2, 6, 1, 16, 1, 6, 2, 1, 1, 3, 1, 5, 3, 36, 1, 4, 17, 1, 2, 1, 1, 1, 12, 1, 1, 7, 1, 3, 1, 10, 13, 3, 7, 3, 1, 9, 206, 1, 1, 1, 3, 34, 1, 10, 1, 1, 7, 1, 705, 1, 4, 4, 1, 1, 2, 1, 4, 2, 2, 1, 3, 8, 1, 19, 2, 1, 11, 3, 1, 725, 1, 37
Offset: 0

Views

Author

Harry J. Smith, May 09 2009

Keywords

Comments

gamma(1/6)*gamma(1/3)/(3*sqrt(Pi)) = gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi).

Examples

			2.804364210650908522350038158... = 2 + 1/(1 + 1/(4 + 1/(8 + 1/(1 + ...)))).
		

Crossrefs

Cf. A118292 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction((Gamma(1/6)*Gamma(1/3))/(3*Sqrt(Pi(R)))); // G. C. Greubel, Oct 05 2018
  • Mathematica
    ContinuedFraction[(Gamma[1/6]*Gamma[1/3])/(3*Sqrt[Pi]), 100] (* G. C. Greubel, Oct 05 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 4100); x=gamma(1/3)^3/(2^(1/3)*sqrt(3)*Pi); x=contfrac(x); for (n=1, 4000, write("b160323.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Jun 20 2009
    

Extensions

Offset changed by Andrew Howroyd, Aug 09 2024