cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A160340 Indices of records in heights of cyclotomic polynomials (A160338).

Original entry on oeis.org

1, 105, 385, 1365, 1785, 2805, 3135, 6545, 10465, 11305, 17255, 20615, 26565, 40755, 106743, 171717, 255255, 279565, 327845, 707455, 886445, 983535, 1181895, 1752465, 3949491, 8070699, 10163195, 13441645, 15069565, 30489585, 37495115, 40324935
Offset: 1

Views

Author

Max Alekseyev, May 13 2009

Keywords

Comments

m is in this sequence if A160338(k) < A160338(m) for all k

Crossrefs

Subsequence of A013594 and A046887.

Programs

  • Mathematica
    r = 0; Do[If[# > r, r = #; Print[n]] &@ Max@ Abs@ CoefficientList[Cyclotomic[n, x], x], {n, 10^4}] (* Michael De Vlieger, May 20 2024 *)
  • PARI
    print1(r=1); for(n=2,1e4, t=vecmax(abs(Vec(polcyclo(n)))); if(t>r, r=t; print1(", "n))) \\ Charles R Greathouse IV, Jun 28 2012

A160339 Records in heights of cyclotomic polynomials (A160338).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 14, 23, 25, 27, 59, 359, 397, 434, 532, 1182, 31010, 35111, 44125, 59815, 14102773, 14703509, 56938657, 74989473, 1376877780831, 1475674234751, 1666495909761, 2201904353336, 2286541988726, 2699208408726, 862550638890874931
Offset: 1

Author

Max Alekseyev, May 13 2009

Keywords

Crossrefs

Formula

a(n) = A160338(A160340(n)).

A137979 Highest coefficient occurring in the factorization of x^n - 1 over the reals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Author

Ian Miller, Feb 25 2008

Keywords

Comments

Based on a comment in Mathematica helpfile ref/Factor - Neat Examples.
The first factorization of x^n - 1 in which a 2 appears as a coefficient is for n=105.
Different from A160338, see comment there.

Examples

			a(4) = 1 because x^4 - 1 = (x^2+1)(x+1)(x-1) and the highest coefficient of these three terms is 1.
The first time a 2 appears is at n=105, where the factorization is:
(x-1)*(x^6+x^5+x^4+x^3+x^2+x+1)*(x^4+x^3+x^2+x+1)*
(x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1)*
(x^2+x+1)*(x^12-x^11+x^9-x^8+x^6-x^4+x^3-x+1)*
(x^8-x^7+x^5-x^4+x^3-x+1)*
(x^48+x^47+x^46-x^43-x^42-2*x^41-x^40-x^39+x^36+x^35+x^34+x^33+x^32+x^31-x^28-x^26-x^24-x^22-x^20+x^17+x^16+x^15+x^14+x^13+x^12-x^9-x^8-2*x^7-x^6-x^5+x^2+x+1). - _N. J. A. Sloane_, Apr 18 2008
		

Crossrefs

Programs

  • Mathematica
    Table[Max[Abs[Flatten[CoefficientList[Transpose[FactorList[x^i - 1]][[1]], x]]]], {i, 1, 1000}]
  • PARI
    a(n) = {my(f = factor(x^n-1)); vecmax(vector(#f~, k, vecmax(apply(x->abs(x), Vec(f[k,1])))));} \\ Michel Marcus, Dec 05 2018

A365335 The number of exponentially odd coreful divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

First differs from A160338 at n = 64, and from A178489 at n = 65.
The number of divisors of the square root of the largest square dividing n is A046951(n).
The number of exponentially odd divisors of the square root of the largest square dividing n is A365549(n) and their sum is A365336(n). [corrected, Sep 08 2023]

Programs

  • Mathematica
    f[p_, e_] := Max[1, Floor[(e+2)/4]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> max(1, (x+2)\4), factor(n)[, 2]));

Formula

a(n) = A325837(A000188(n)).
a(n) > 1 if and only if n is a bicubeful number (A355265).
Multiplicative with a(p^e) = floor((e+2)/4).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 - 1/p^(4*s) + 1/p^(6*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.0181534831085... .

Extensions

Name corrected by Amiram Eldar, Sep 08 2023

A160341 Height of the 3*5*7*11*...*prime(n)-th cyclotomic polynomial.

Original entry on oeis.org

1, 1, 2, 3, 23, 532, 669606, 8161018310, 2888582082500892851
Offset: 1

Author

Max Alekseyev, May 13 2009, May 19 2009

Keywords

Crossrefs

Formula

a(n) = A160338(A070826(n)).

A189408 Least k where Phi(k) has height greater than k^n, where Phi(k) is the k-th cyclotomic polynomial and the height is the largest absolute value of the coefficients.

Original entry on oeis.org

1181895, 43730115, 416690995, 1880394945
Offset: 1

Author

Keywords

Comments

Arnold & Monagan compute this sequence to demonstrate their fast algorithm for computing cyclotomic polynomials.
This sequence is infinite because (the supremum of) A160338 grows exponentially.

Crossrefs

Subsequence of A160340. Cf. A160338, A108975.
Showing 1-6 of 6 results.