cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A160440 Smaller member of a pair (p,q) of cousin primes such that p and q are in different centuries.

Original entry on oeis.org

97, 397, 499, 1297, 1597, 1999, 2797, 3697, 4999, 6199, 6997, 7699, 9199, 10099, 10597, 12097, 13099, 16699, 18397, 20899, 21397, 21499, 21799, 23197, 23599, 25999, 26497, 27697, 27799, 27997, 32299, 32797, 33199, 34297, 35797, 38197, 38299, 39499, 42697
Offset: 1

Views

Author

Ki Punches, May 13 2009

Keywords

Comments

Sequence is probably infinite.
Dickson's conjecture implies there are infinitely many pairs of primes (100*k-3, 100*k+1) and infinitely many pairs of primes (100*k-1, 100*k+3). - Robert Israel, Mar 28 2023
It appears that every integer occurs as the difference round((a(n+1)-a(n))/100); all numbers 1..298 occur as these differences for a(n) < 1000000000. - Hartmut F. W. Hoft, May 18 2017

Examples

			Cousin primes 1597 and 1601 are in successive (that is 16th and 17th) centuries.
		

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0:
    for i from 1 while count < 100 do
      if ((i mod 3 = 1) and isprime(100*i-3) and isprime(100*i+1)) then
         R:= R, 100*i-3; count:= count+1
      elif ((i mod 3 = 2) and isprime(100*i-1) and isprime(100*i+3)) then
         R:= R, 100*i-1; count:= count+1
    fi od:
    R; # Robert Israel, Mar 28 2023
  • Mathematica
    a160440[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[100, n, 100]], First[#]-Last[#]==4&]]
    a160440[43000] (* data *) (* Hartmut F. W. Hoft, May 18 2017 *)

Formula

{A023200(n): [A023200(n)/100] <> [A046132(n)/100]}, where [..]=floor(..).

Extensions

Edited by R. J. Mathar, May 14 2009

A160500 Prime p1 of consecutive primes p1, p2, where p2-p1=10, and p1, p2 are in different centuries.

Original entry on oeis.org

691, 1399, 1699, 5791, 6091, 6691, 6793, 7297, 8599, 10993, 12391, 12799, 13999, 14197, 14293, 15091, 15391, 15991, 17599, 18493, 18691, 19699, 22699, 22993, 23899, 24499, 24799, 25693, 26893, 27397, 28099, 28297, 28393, 29191, 33493
Offset: 1

Views

Author

Ki Punches, May 15 2009

Keywords

Comments

The sequence is probably infinite.
It appears that every integer occurs as the difference round((a(n+1)-a(n))/100); all numbers 1..228 occur as these differences for a(n) < 1000000000. - Hartmut F. W. Hoft, May 18 2017

Examples

			Consecutive primes 10993 and 11003 differ by 10 and are in consecutive centuries, so 10993 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    a160500[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[100, n, 100]], First[#]-Last[#]==10&]]
    a160500[33500] (* data *) (* Hartmut F. W. Hoft, May 18 2017 *)
    cpdcQ[{a_,b_}]:=b-a==10&&Floor[a/100]!=Floor[b/100]; Select[Partition[Prime[Range[ 4000]],2,1],cpdcQ][[;;,1]] (* Harvey P. Dale, Sep 02 2024 *)

Extensions

Edited by Ray Chandler, May 22 2009

A287049 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 8, and p1, p2 are in different centuries.

Original entry on oeis.org

1193, 2699, 5399, 5693, 6599, 6899, 7499, 8093, 8699, 12899, 13799, 15299, 17099, 17393, 19793, 20399, 23993, 26099, 26399, 27893, 35099, 35393, 35999, 36299, 36599, 37493, 38699, 39293, 40499, 42299, 43793, 46499, 50093, 50993, 51599, 51899, 53093, 53993, 55799, 56393, 57593, 58199, 59399, 59699
Offset: 1

Views

Author

Hartmut F. W. Hoft, May 18 2017

Keywords

Comments

Since a(n) and a(n)+8 are consecutive primes either a(n)+7 or a(n)+1 is a multiple of 100; in addition a(n) must have the form 6k-1. Therefore, every century spanned by a(n) and a(n)+8 is a multiple of 300. It appears that every multiple of 3 occurs as the difference round((a(n+1)-a(n))/100); all multiples of 3 through 432 occur as these differences for a(n) < 1000000000.

Crossrefs

Programs

  • Mathematica
    a287049[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[100, n, 100]], First[#]-Last[#]==8&]]
    a287049[60000] (* data *)
    Select[Partition[Prime[Range[6100]],2,1],#[[2]]-#[[1]]==8&&Floor[#[[1]]/ 100] != Floor[#[[2]]/100]&][[All,1]] (* Harvey P. Dale, Oct 02 2019 *)

A288021 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 4, and p1, p2 are in different decades.

Original entry on oeis.org

7, 19, 37, 67, 79, 97, 109, 127, 229, 277, 307, 349, 379, 397, 439, 457, 487, 499, 739, 757, 769, 859, 877, 907, 937, 967, 1009, 1087, 1279, 1297, 1429, 1447, 1489, 1549, 1567, 1579, 1597, 1609, 1867, 1999, 2137, 2239, 2269, 2347, 2377, 2389, 2437, 2539, 2617, 2659, 2689, 2707, 2749, 2797, 2857
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 04 2017

Keywords

Comments

The unit digits of the numbers in the sequence are 7's or 9's.

Examples

			7 is in this sequence since pair (7,11) is the first with difference 4 spanning a multiple of 10.
		

Crossrefs

Programs

  • Mathematica
    a288021[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==4&]]
    a288021[3000] (* data *)

A288022 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 6, and p1, p2 are in different decades.

Original entry on oeis.org

47, 157, 167, 257, 367, 557, 587, 607, 647, 677, 727, 947, 977, 1097, 1117, 1187, 1217, 1367, 1657, 1747, 1777, 1907, 1987, 2207, 2287, 2417, 2467, 2677, 2837, 2897, 2957, 3307, 3407, 3607, 3617, 3637, 3727, 3797, 4007, 4357, 4457, 4507, 4597, 4657, 4937, 4987
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 04 2017

Keywords

Comments

The unit digits of the numbers in the sequence are 7's.
Number of terms < 10^k: 0, 0, 1, 13, 81, 565, 4027, 30422, 237715, ... - Muniru A Asiru, Jan 09 2018

Examples

			47 is in the sequence since pair (47,53) is the first with difference 6 spanning a multiple of 10.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..20000], IsPrime);
    P1:=List(Filtered(Filtered(List([1..Length(P)-1],n->[P[n],P[n+1]]),i->i[2]-i[1]=6),j->j[1] mod 5=2),k->k[1]); # Muniru A Asiru, Jul 08 2017
  • Maple
    for n from 1 to 2000 do if [ithprime(n+1)-ithprime(n), ithprime(n) mod 5] = [6,2] then print(ithprime(n)); fi; od; # Muniru A Asiru, Jan 19 2018
  • Mathematica
    a288022[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==6&]]
    a288022[3000] (* data *)

A288024 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 8, and p1, p2 are in different decades.

Original entry on oeis.org

89, 359, 389, 449, 479, 683, 719, 743, 929, 983, 1109, 1163, 1193, 1373, 1439, 1523, 1559, 1733, 1823, 1979, 2003, 2153, 2213, 2243, 2273, 2459, 2609, 2663, 2699, 2843, 2879, 2909, 3209, 3449, 3623, 3719, 4289, 4349, 4583, 4943, 5189, 5399, 5573, 5693, 5783, 5813
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 04 2017

Keywords

Comments

The unit digits of the numbers in the sequence are 3's or 9's.

Examples

			89 is in the sequence since pair (89,97) is the first with difference 8 spanning a multiple of 10.
		

Crossrefs

Programs

  • Mathematica
    a288024[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==8&]]
    a288024[6000] (* data *)
    Select[Partition[Prime[Range[800]],2,1],#[[2]]-#[[1]]==8&&IntegerDigits[#[[1]]][[-2]]!= IntegerDigits[ #[[2]]][[-2]]&][[;;,1]] (* Harvey P. Dale, Jan 09 2024 *)

A287050 Square array read by antidiagonals upwards: M(n,k) is the initial occurrence of first prime p1 of consecutive primes p1, p2, where p2 - p1 = 2*k, and p1, p2 span a multiple of 10^n, n>=1, k>=1.

Original entry on oeis.org

29, 599, 7, 2999, 97, 47, 179999, 1999, 1097, 89, 23999999, 69997, 21997, 1193, 139, 23999999, 199999, 369997, 23993, 691, 199, 29999999, 19999999, 3199997, 149993, 10993, 199, 113, 17399999999, 19999999, 6999997, 1199999, 139999, 997, 293, 1831
Offset: 1

Views

Author

Hartmut F. W. Hoft, May 18 2017

Keywords

Comments

The unit digits of the numbers in the matrix representation M(n,k) are 9's for column 1, 7's or 9's for column 2, 7's for column 3, 3's or 9's for column 4, and 1's, 3's, 7's or 9's for column 5.
The following matrix terms appear as first terms in sequence
A060229(1) = M(1,1)
A288021(1) = M(1,2)
A288022(1) = M(1,3)
A288024(1) = M(1,4)
A031928(1) = M(1,5)
A158277(1) = M(2,1)
A160440(1) = M(2,2)
A160370(1) = M(2,3)
A287049(1) = M(2,4)
A160500(1) = M(2,5)
A158861(1) = M(3,1).

Examples

			The matrix representation of the sequence with row n indicating the spanned power of 10 and column k indicating the difference of 2*k between the first pair of consecutive primes spanning a multiple of 10^n:
--------------------------------------------------------------------------
n\k   1             2             3             4            5
--------------------------------------------------------------------------
1 |   29            7             47            89           139
2 |   599           97            1097          1193         691
3 |   2999          1999          21997         23993        10993
4 |   179999        69997         369997        149993       139999
5 |   23999999      199999        3199997       1199999      1999993
6 |   23999999      19999999      6999997       38999993     1999993
7 |   29999999      19999999      159999997     659999999    379999999
8 |   17399999999   7699999999    9399999997    8999999993   499999993
9 |   92999999999   135999999997  85999999997   8999999993   28999999999
10|   569999999999  519999999997  369999999997  29999999993  819999999997
...
Every column in the matrix is nondecreasing.
For the first and fourth columns, ceiling(M[n,1]/10^n) and ceiling(M[n,4]/10^n) are divisible by 3, for all n>=1 (see A158277 and A287049).
		

Crossrefs

Formula

M(n,k) = min( p_i : p_(i+1) - p_i = 2*k, p_i and p_(i+1) consecutive primes and p_i < m*10^n < p_(i+1) for some integer m) where p_j is the j-th prime, n>=1 and k>=1.
Showing 1-7 of 7 results.