A160399 a(n) = Sum_{k=1..n} binomial(n,k) * d(k), where d(k) = the number of positive divisors of k.
1, 4, 11, 27, 62, 137, 296, 630, 1326, 2768, 5744, 11867, 24429, 50135, 102627, 209641, 427518, 870579, 1770536, 3596614, 7298397, 14796658, 29974913, 60681233, 122767148, 248232863, 501648844, 1013257334, 2045684971
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Eric M. Schmidt, The probability that the number of points on a complete intersection is squarefree, Rocky Mountain J. Math, Volume 47, Number 8 (2017), 2777-2796.
Crossrefs
Cf. A000005. - Emeric Deutsch, May 15 2009
Programs
-
GAP
List([1..10^3], n -> Sum([1..n], k -> Binomial(n,k) * Number(DivisorsInt(k)))); # Muniru A Asiru, Feb 04 2018
-
Magma
[&+[Binomial(n,k)*NumberOfDivisors(k):k in [1..n]]:n in [1..30]]; // Marius A. Burtea, Nov 12 2019
-
Magma
[&+[&+[Binomial(n,i*j):j in [1..n]]:i in [1..n]]:n in [1..31]]; // Marius A. Burtea, Nov 12 2019
-
Maple
with(numtheory): seq(sum(binomial(n, k)*tau(k), k = 1 .. n), n = 1 .. 30); # Emeric Deutsch, May 15 2009 A160399 := proc(n) local k; add(binomial(n,k)*numtheory[tau](k),k=1..n) ; end: seq(A160399(n),n=1..40) ; # R. J. Mathar, May 17 2009
-
Mathematica
a[n_] := Sum[Binomial[n, k]*DivisorSigma[0, k], {k, 1, n}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 25 2017 *)
-
PARI
a(n) = sum(k=1, n, binomial(n, k)*numdiv(k)); \\ Michel Marcus, Feb 25 2017
Formula
G.f.: (Sum_{k>=1} (x/(1-x))^k/(1-x^k/(1-x)^k))/(1-x). - Emeric Deutsch, May 15 2009
E.g.f.: exp(x)*Sum_{k>=1} d(k)*x^k/k!. - Ilya Gutkovskiy, Nov 26 2017
a(n) = 2^n*(log(n) + 2*gamma - log(2)) + O(2^n*n^(-1/4)). [Put alpha_n = beta_n = 1/2 in Thm. 4.2 of Schmidt.] - Eric M. Schmidt, Feb 03 2018
a(n) = Sum_{i=1..n} Sum_{j=1..n} binomial(n,i*j). - Ridouane Oudra, Nov 12 2019
Extensions
More terms from Emeric Deutsch and R. J. Mathar, May 15 2009
Comments