cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160571 G.f.: Product_{n>=1} (1 + x^n + x^(n+1)).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 15, 21, 28, 38, 52, 70, 92, 119, 154, 200, 258, 329, 416, 523, 655, 819, 1022, 1269, 1566, 1924, 2357, 2879, 3507, 4263, 5170, 6250, 7530, 9048, 10849, 12980, 15496, 18466, 21967, 26079, 30894, 36526, 43109, 50792, 59743, 70160
Offset: 0

Views

Author

Paul D. Hanna, May 20 2009, May 21 2009, Jul 17 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 10*x^6 + 15*x^7 + ...
G.f.: A(x) = (1+x*(1+x))*(1+x^2*(1+x))*(1+x^3*(1+x))*(1+x^4*(1+x))*...
G.f.: A(x) = (1+x*(1+x)) + x^2*(1+x)*(1 + x^3*(1+x))*(1+x*(1+x))/(1-x) + x^7*(1+x)^2*(1 + x^5*(1+x))*(1+x*(1+x))*(1+x^2*(1+x))/((1-x)*(1-x^2)) + x^15*(1+x)^3*(1 + x^7*(1+x))*(1+x*(1+x))*(1+x^2*(1+x))*(1+x^3*(1+x))/((1-x)*(1-x^2)*(1-x^3)) + ...
G.f.: A(x) = 1 + x*(1+x)/(1-x) + x^3*(1+x)^2/((1-x)*(1-x^2)) + x^6*(1+x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^10*(1+x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + ...
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    P:= mul(1+x^n+x^(n+1),n=1..N):
    S:= series(P,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Sep 04 2018
  • Mathematica
    With[{nn=50},CoefficientList[Series[Product[1+x^n+x^(n+1),{n,1,nn}],{x,0,nn}],x]] (* Harvey P. Dale, Dec 29 2015 *)
  • PARI
    a(n)=polcoeff(prod(k=1,n,1+x^k*(1+x) +x*O(x^n)),n)
    
  • PARI
    {a(n)=local(A=1+x); A=sum(m=0, n, x^(m*(3*m+1)/2)*(1+x)^m*(1 + x^(2*m+1)*A)*prod(k=1, m, (1+A*x^k)/(1-x^k+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); A=sum(m=0, n, x^(m*(m+1)/2)*(1+x)^m/prod(k=1, m, 1-x^k +x*O(x^n))); polcoeff(A, n)}

Formula

G.f.: A(x) = Sum_{n>=0} x^(n*(3*n+1)/2)*(1+x)^n*(1 + x^(2*n+1)*(1+x)) * Product_{k=1..n} (1 + x^k*(1+x))/(1-x^k) due to Sylvester's identity.
G.f.: A(x) = Sum_{n>=0} x^(n*(n+1)/2)*(1+x)^n / Product_{k=1..n} (1-x^k).
G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1)*(1 + x)^d/d). - Ilya Gutkovskiy, Apr 18 2019
a(n) ~ c * exp(r*sqrt(n)) / n^(3/4), where r = 2*sqrt(-polylog(2,-2)) = 2.397287105779... and c = (-polylog(2,-2))^(1/4) / (6*sqrt(Pi)) = 0.10294821957... - Vaclav Kotesovec, Oct 24 2020, updated Jun 25 2021