cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A227681 G.f.: exp( Sum_{n>=1} x^n * (1+x)^n / (n*(1-x^n)) ).

Original entry on oeis.org

1, 1, 3, 6, 12, 23, 43, 79, 142, 252, 442, 766, 1316, 2244, 3799, 6393, 10704, 17841, 29618, 49000, 80823, 132964, 218242, 357501, 584608, 954553, 1556575, 2535425, 4125805, 6708143, 10898897, 17696749, 28719276, 46586050, 75538702, 122444483, 198420445, 321461918
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 12*x^4 + 23*x^5 + 43*x^6 + 79*x^7 +...
where
log(A(x)) = x*(1+x)/(1-x) + x^2*(1+x)^2/(2*(1-x^2)) + x^3*(1+x)^3/(3*(1-x^3)) + x^4*(1+x)^4/(4*(1-x^4)) + x^5*(1+x)^5/(5*(1-x^5)) +...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 10*x^3/3 + 17*x^4/4 + 26*x^5/5 + 38*x^6/6 + 57*x^7/7 + 81*x^8/8 + 118*x^9/9 + 180*x^10/10 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^k*(1 + x)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2021 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*(1+x)^m/(1-x^m +x*O(x^n)) )), n)}
    for(n=0, 50, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m*sumdiv(m, d, (1+x +x*O(x^n))^d/d) )), n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} x^n * Sum_{d|n} (1+x)^d / d ).
G.f.: Product {n >= 1} 1/(1 - (1 + x)*x^n). - Peter Bala, Jan 20 2015
a(n) ~ phi^(n+1) / (sqrt(5)* A276987), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 16 2019

A336980 Expansion of Product_{k>=1} (1 + x^k * (1 + k*x)).

Original entry on oeis.org

1, 1, 2, 4, 8, 13, 22, 39, 65, 104, 160, 263, 413, 646, 975, 1479, 2198, 3354, 5017, 7389, 10770, 15721, 22668, 32663, 47200, 67761, 96389, 135977, 191431, 268805, 376211, 523692, 730301, 1014029, 1401553, 1925074, 2638522, 3608182, 4924194, 6694070, 9088239, 12323707, 16668255
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 42; CoefficientList[Series[Product[1 + x^k*(1 + k*x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, Apr 29 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1+x^k*(1+k*x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, (-1)^(d+1)*(1+k/d*x)^d/d))))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1) * (1 + k/d * x)^d / d).

A306565 Expansion of Product_{k>=1} (1 - x^k * (1 + x)).

Original entry on oeis.org

1, -1, -2, -1, 1, 3, 4, 3, 1, -2, -6, -8, -8, -8, -5, 2, 8, 12, 17, 22, 23, 17, 7, 0, -7, -22, -40, -51, -53, -49, -45, -42, -30, -4, 30, 65, 90, 100, 112, 137, 157, 152, 120, 71, 18, -33, -80, -125, -187, -275, -357, -401, -407, -380, -327, -269, -221, -171, -75, 102, 322, 515, 669, 801
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2019

Keywords

Crossrefs

Convolution inverse of A227681.
Cf. A160571.

Programs

  • Mathematica
    m = 63; CoefficientList[Series[Product[1 - x^k * (1 + x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k*(1+x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, (1+x)^d/d))))

Formula

G.f.: exp( - Sum_{k>=1} x^k * Sum_{d|k} (1+x)^d / d).

A336979 Expansion of Product_{k>=1} (1 + x^k * (k + x)).

Original entry on oeis.org

1, 1, 3, 6, 11, 21, 37, 69, 108, 192, 312, 522, 827, 1297, 2032, 3240, 4982, 7569, 11508, 17107, 25696, 38340, 57080, 83298, 121373, 175653, 253455, 364307, 523650, 747487, 1063375, 1498471, 2106317, 2955154, 4124071, 5750547, 8000706, 11104596, 15324290, 21093106
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 39; CoefficientList[Series[Product[1 + x^k*(k + x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 01 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1+x^k*(k+x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, (-1)^(d+1)*(k/d+x)^d/d))))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1) * (k/d + x)^d / d).

A306691 Expansion of Product_{k>=1} (1 + x^k * (1 - x)).

Original entry on oeis.org

1, 1, 0, 1, -1, 1, 0, -1, 1, 0, 0, -2, 4, -4, 3, -2, 0, 2, -1, -2, 3, -1, -3, 8, -11, 10, -8, 9, -13, 15, -9, -2, 6, 2, -14, 21, -20, 10, 8, -25, 29, -22, 20, -31, 46, -53, 48, -33, 15, -9, 27, -57, 71, -62, 53, -63, 83, -87, 53, 16, -80, 91, -47, 3, -19, 99, -186, 219, -184
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=70},CoefficientList[Series[Product[1+x^k (1-x),{k,nn}],{x,0,nn}],x]] (* Harvey P. Dale, Aug 03 2020 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1+x^k*(1-x)))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1)*(1 - x)^d/d). - Ilya Gutkovskiy, Apr 16 2019

A309172 Expansion of Product_{k>=1} 1/(1 - (1 + x + x^2) * x^k).

Original entry on oeis.org

1, 1, 3, 7, 15, 31, 64, 128, 254, 496, 961, 1844, 3516, 6662, 12564, 23593, 44153, 82385, 153351, 284857, 528235, 978148, 1809120, 3342722, 6171318, 11385733, 20994298, 38693809, 71288111, 131297855, 241761727, 445068646, 819205061, 1507641487, 2774307387, 5104712633
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[1/(1 - (1 + x + x^2) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Exp[Sum[x^k Sum[(1 + x + x^2)^d/d, {d, Divisors[k]}], {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (1 + x + x^2)^d/d).
a(n) ~ 1/((1 + 2*r + 3*r^2) * QPochhammer[r] * r^(n+1)), where r = A192918. - Vaclav Kotesovec, Jul 16 2019

A309173 Expansion of Product_{k>=1} (1 + (1 + x + x^2) * x^k).

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 15, 23, 34, 50, 71, 100, 140, 195, 268, 363, 487, 650, 865, 1145, 1505, 1962, 2541, 3275, 4208, 5390, 6879, 8740, 11053, 13917, 17459, 21837, 27244, 33906, 42085, 52085, 64268, 79071, 97025, 118772, 145082, 176869, 215204, 261333, 316705, 383019
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Product[(1 + (1 + x + x^2) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Exp[Sum[x^k Sum[(-1)^(d + 1) (1 + x + x^2)^d/d, {d, Divisors[k]}], {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1) * (1 + x + x^2)^d/d).

A345729 Expansion of Product_{k>=1} (1 + x^k + x^(k+2)).

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 7, 11, 15, 20, 28, 36, 50, 62, 86, 105, 141, 175, 226, 283, 358, 446, 557, 691, 852, 1055, 1286, 1587, 1918, 2353, 2830, 3445, 4134, 4993, 5977, 7174, 8555, 10220, 12138, 14436, 17092, 20232, 23896, 28158, 33172, 38937, 45736, 53512, 62662
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 25 2021

Keywords

Crossrefs

Cf. A160571.

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1 + x^k + x^(k+2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * exp(r*sqrt(n)) / n^(3/4), where r = 2*sqrt(-polylog(2,-2)) and c = (-polylog(2,-2))^(1/4) / (6*sqrt(3*Pi)).

A346679 Expansion of Product_{k>=1} (1 + x^k*(1+x)) / (1 - x^k*(1+x)).

Original entry on oeis.org

1, 2, 6, 14, 32, 68, 140, 280, 544, 1034, 1930, 3544, 6416, 11472, 20288, 35532, 61696, 106304, 181906, 309362, 523228, 880576, 1475424, 2462302, 4094682, 6787588, 11219504, 18498094, 30429502, 49955706, 81864400, 133940690, 218834842, 357090226, 582050680
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 31 2021

Keywords

Comments

Convolution of A160571 and A227681.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k*(1+x))/(1-x^k*(1+x)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2*c * phi^(n+1) / sqrt(5), where phi = A001622 is the golden ratio and c = Product_{k>=2} (phi^k + 1 + 1/phi) / (phi^k - 1 - 1/phi) = 32.9911047431709572178149423384235021321790640826498395008790713974339...
Showing 1-9 of 9 results.