cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A227681 G.f.: exp( Sum_{n>=1} x^n * (1+x)^n / (n*(1-x^n)) ).

Original entry on oeis.org

1, 1, 3, 6, 12, 23, 43, 79, 142, 252, 442, 766, 1316, 2244, 3799, 6393, 10704, 17841, 29618, 49000, 80823, 132964, 218242, 357501, 584608, 954553, 1556575, 2535425, 4125805, 6708143, 10898897, 17696749, 28719276, 46586050, 75538702, 122444483, 198420445, 321461918
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 12*x^4 + 23*x^5 + 43*x^6 + 79*x^7 +...
where
log(A(x)) = x*(1+x)/(1-x) + x^2*(1+x)^2/(2*(1-x^2)) + x^3*(1+x)^3/(3*(1-x^3)) + x^4*(1+x)^4/(4*(1-x^4)) + x^5*(1+x)^5/(5*(1-x^5)) +...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 10*x^3/3 + 17*x^4/4 + 26*x^5/5 + 38*x^6/6 + 57*x^7/7 + 81*x^8/8 + 118*x^9/9 + 180*x^10/10 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^k*(1 + x)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2021 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*(1+x)^m/(1-x^m +x*O(x^n)) )), n)}
    for(n=0, 50, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m*sumdiv(m, d, (1+x +x*O(x^n))^d/d) )), n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} x^n * Sum_{d|n} (1+x)^d / d ).
G.f.: Product {n >= 1} 1/(1 - (1 + x)*x^n). - Peter Bala, Jan 20 2015
a(n) ~ phi^(n+1) / (sqrt(5)* A276987), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 16 2019

A336978 Expansion of Product_{k>=1} (1 - x^k * (1 + k*x)).

Original entry on oeis.org

1, -1, -2, -2, 0, 3, 8, 11, 9, 8, -10, -31, -57, -58, -107, -85, -4, 120, 167, 383, 616, 905, 948, 479, -82, -125, -905, -3661, -5937, -8247, -8807, -7756, -6249, -8147, -3525, 8330, 30748, 54740, 82660, 85406, 86083, 109681, 148897, 148077, 81288, -57885, -257092, -490304
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2020

Keywords

Crossrefs

Convolution inverse of A336976.

Programs

  • Mathematica
    m = 47; CoefficientList[Series[Product[1 - x^k*(1 + k*x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 01 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k*(1+k*x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, (1+k/d*x)^d/d))))

Formula

G.f.: exp( - Sum_{k>=1} x^k * Sum_{d|k} (1 + k/d * x)^d / d).

A336977 Expansion of Product_{k>=1} (1 - x^k * (k + x)).

Original entry on oeis.org

1, -1, -3, -2, 1, 9, 11, 15, 6, -18, -46, -54, -115, -101, 32, 82, 182, 455, 804, 915, 434, -114, 196, -974, -3507, -6913, -7555, -5081, -4480, -7463, -4861, 7677, 25779, 56080, 76015, 51021, 53996, 104670, 114132, 93920, -33843, -233380, -491936, -658774, -597698, -601576
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2020

Keywords

Crossrefs

Convolution inverse of A336975.

Programs

  • Mathematica
    m = 45; CoefficientList[Series[Product[1 - x^k*(k + x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 01 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k*(k+x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, (k/d+x)^d/d))))

Formula

G.f.: exp( - Sum_{k>=1} x^k * Sum_{d|k} (k/d + x)^d / d).

A306691 Expansion of Product_{k>=1} (1 + x^k * (1 - x)).

Original entry on oeis.org

1, 1, 0, 1, -1, 1, 0, -1, 1, 0, 0, -2, 4, -4, 3, -2, 0, 2, -1, -2, 3, -1, -3, 8, -11, 10, -8, 9, -13, 15, -9, -2, 6, 2, -14, 21, -20, 10, 8, -25, 29, -22, 20, -31, 46, -53, 48, -33, 15, -9, 27, -57, 71, -62, 53, -63, 83, -87, 53, 16, -80, 91, -47, 3, -19, 99, -186, 219, -184
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=70},CoefficientList[Series[Product[1+x^k (1-x),{k,nn}],{x,0,nn}],x]] (* Harvey P. Dale, Aug 03 2020 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1+x^k*(1-x)))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1)*(1 - x)^d/d). - Ilya Gutkovskiy, Apr 16 2019

A309575 Expansion of Product_{k>=1} (1 - (x*(1 + x))^k).

Original entry on oeis.org

1, -1, -2, -2, -1, 1, 5, 11, 17, 26, 36, 35, 20, -5, -65, -221, -510, -897, -1379, -2157, -3498, -5225, -6500, -6425, -4775, -1463, 5951, 25905, 74833, 173129, 334719, 563200, 876876, 1363232, 2208921, 3621969, 5631470, 7896109, 9725768, 10374574, 9340382, 6104500, -1413334
Offset: 0

Views

Author

Seiichi Manyama, Sep 21 2019

Keywords

Crossrefs

Convolution inverse of A238441.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 - (x*(1+x))^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 22 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-(x*(1+x))^k))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, sigma(k)*(x*(1+x))^k/k)))

Formula

G.f.: exp(-Sum_{k>=1} sigma(k)*(x*(1+x))^k/k).
Showing 1-5 of 5 results.