cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A152398 The q-exponential of x, e_q(x,q), evaluated at q = -x.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 11, 17, 28, 48, 80, 128, 204, 332, 545, 887, 1432, 2313, 3750, 6086, 9859, 15944, 25788, 41749, 67604, 109415, 177017, 286409, 463495, 750081, 1213713, 1963771, 3177444, 5141446, 8319390, 13461189, 21780519, 35241682
Offset: 0

Views

Author

Paul D. Hanna, Dec 16 2008

Keywords

Comments

The g.f.s for this sequence illustrate the following formula:
log(e_q(x,q)) = Sum_{n>=1} (1-q)^n/(1-q^n)*x^n/n, where
e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential of x and
faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.

Examples

			G.f.: e_q(x,-x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 11*x^6 + ...
log(e_q(x,-x)) = x + x^2/2 + 4*x^3/3 + 9*x^4/4 + 16*x^5/5 + 22*x^6/6 + ... (A152399).
		

Crossrefs

Cf. A152399: log(e_q(x, -x)); A227681, A306749.

Programs

  • PARI
    a(n)=polcoeff(sum(k=0,n,x^k/(prod(j=1,k,(1-(-x)^j)/(1+x))+x*O(x^n))),n)
    
  • PARI
    a(n)=polcoeff(exp(sum(k=1,n,x^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)),n)
    
  • PARI
    {a(n)=polcoeff(1/prod(k=1,n,1+(1+x)*(-x)^k+x*O(x^n)),n)} \\ Paul D. Hanna, Dec 20 2008

Formula

G.f.: e_q(x,-x) = Sum_{n>=0} x^n/(Product_{k=1..n} (1-(-x)^k)/(1+x)).
G.f.: e_q(x,-x) = exp( Sum_{n>=1} x^n*(1+x)^n/(1-(-x)^n)/n ).
G.f.: 1/Product_{k>0} 1+(1+x)*(-x)^k. - Vladeta Jovovic, Dec 19 2008
a(n) ~ c/r^n where r = (sqrt(5) - 1)/2 = 0.6180339887... and c = 0.652419554233497352459208493304650..., where e_q(-r,r) = 0.887276226980250304353751667447441... - Paul D. Hanna, Dec 20 2008
c = 1 / (r * sqrt(5) * QPochhammer((1-sqrt(5))/2)). - Vaclav Kotesovec, Oct 22 2020

A160571 G.f.: Product_{n>=1} (1 + x^n + x^(n+1)).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 15, 21, 28, 38, 52, 70, 92, 119, 154, 200, 258, 329, 416, 523, 655, 819, 1022, 1269, 1566, 1924, 2357, 2879, 3507, 4263, 5170, 6250, 7530, 9048, 10849, 12980, 15496, 18466, 21967, 26079, 30894, 36526, 43109, 50792, 59743, 70160
Offset: 0

Views

Author

Paul D. Hanna, May 20 2009, May 21 2009, Jul 17 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 10*x^6 + 15*x^7 + ...
G.f.: A(x) = (1+x*(1+x))*(1+x^2*(1+x))*(1+x^3*(1+x))*(1+x^4*(1+x))*...
G.f.: A(x) = (1+x*(1+x)) + x^2*(1+x)*(1 + x^3*(1+x))*(1+x*(1+x))/(1-x) + x^7*(1+x)^2*(1 + x^5*(1+x))*(1+x*(1+x))*(1+x^2*(1+x))/((1-x)*(1-x^2)) + x^15*(1+x)^3*(1 + x^7*(1+x))*(1+x*(1+x))*(1+x^2*(1+x))*(1+x^3*(1+x))/((1-x)*(1-x^2)*(1-x^3)) + ...
G.f.: A(x) = 1 + x*(1+x)/(1-x) + x^3*(1+x)^2/((1-x)*(1-x^2)) + x^6*(1+x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^10*(1+x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + ...
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    P:= mul(1+x^n+x^(n+1),n=1..N):
    S:= series(P,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Sep 04 2018
  • Mathematica
    With[{nn=50},CoefficientList[Series[Product[1+x^n+x^(n+1),{n,1,nn}],{x,0,nn}],x]] (* Harvey P. Dale, Dec 29 2015 *)
  • PARI
    a(n)=polcoeff(prod(k=1,n,1+x^k*(1+x) +x*O(x^n)),n)
    
  • PARI
    {a(n)=local(A=1+x); A=sum(m=0, n, x^(m*(3*m+1)/2)*(1+x)^m*(1 + x^(2*m+1)*A)*prod(k=1, m, (1+A*x^k)/(1-x^k+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); A=sum(m=0, n, x^(m*(m+1)/2)*(1+x)^m/prod(k=1, m, 1-x^k +x*O(x^n))); polcoeff(A, n)}

Formula

G.f.: A(x) = Sum_{n>=0} x^(n*(3*n+1)/2)*(1+x)^n*(1 + x^(2*n+1)*(1+x)) * Product_{k=1..n} (1 + x^k*(1+x))/(1-x^k) due to Sylvester's identity.
G.f.: A(x) = Sum_{n>=0} x^(n*(n+1)/2)*(1+x)^n / Product_{k=1..n} (1-x^k).
G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1)*(1 + x)^d/d). - Ilya Gutkovskiy, Apr 18 2019
a(n) ~ c * exp(r*sqrt(n)) / n^(3/4), where r = 2*sqrt(-polylog(2,-2)) = 2.397287105779... and c = (-polylog(2,-2))^(1/4) / (6*sqrt(Pi)) = 0.10294821957... - Vaclav Kotesovec, Oct 24 2020, updated Jun 25 2021

A227682 G.f.: exp( Sum_{n>=1} x^n / (n*(1-x)^n * (1-x^n)) ).

Original entry on oeis.org

1, 1, 3, 7, 16, 35, 76, 162, 342, 715, 1484, 3060, 6278, 12824, 26102, 52969, 107224, 216601, 436798, 879584, 1769117, 3554726, 7136736, 14318524, 28711315, 57544864, 115290624, 230910993, 462362571, 925610398, 1852669016, 3707705019, 7419275371, 14844857959
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2013

Keywords

Comments

Number of compositions of n with k sorts of parts k where the sorts of parts are nondecreasing through the composition, see example. - Joerg Arndt, May 01 2014

Examples

			From _Joerg Arndt_, May 01 2014: (Start)
The a(5) = 35 compositions as described in the first comment are (here p:s stands for a part p of sort s)
01:  [ 1:0  1:0  1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:0  2:0  ]
03:  [ 1:0  1:0  1:0  2:1  ]
04:  [ 1:0  1:0  2:0  1:0  ]
05:  [ 1:0  1:0  3:0  ]
06:  [ 1:0  1:0  3:1  ]
07:  [ 1:0  1:0  3:2  ]
08:  [ 1:0  2:0  1:0  1:0  ]
09:  [ 1:0  2:0  2:0  ]
10:  [ 1:0  2:0  2:1  ]
11:  [ 1:0  2:1  2:1  ]
12:  [ 1:0  3:0  1:0  ]
13:  [ 1:0  4:0  ]
14:  [ 1:0  4:1  ]
15:  [ 1:0  4:2  ]
16:  [ 1:0  4:3  ]
17:  [ 2:0  1:0  1:0  1:0  ]
18:  [ 2:0  1:0  2:0  ]
19:  [ 2:0  1:0  2:1  ]
20:  [ 2:0  2:0  1:0  ]
21:  [ 2:0  3:0  ]
22:  [ 2:0  3:1  ]
23:  [ 2:0  3:2  ]
24:  [ 2:1  3:1  ]
25:  [ 2:1  3:2  ]
26:  [ 3:0  1:0  1:0  ]
27:  [ 3:0  2:0  ]
28:  [ 3:0  2:1  ]
29:  [ 3:1  2:1  ]
30:  [ 4:0  1:0  ]
31:  [ 5:0  ]
32:  [ 5:1  ]
33:  [ 5:2  ]
34:  [ 5:3  ]
35:  [ 5:4  ]
(End)
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[SeriesCoefficient[Exp[Sum[x^k / (k*(1-x)^k * (1-x^k)),{k,1,n}]],{x,0,n}], {n,1,40}]}] (* Vaclav Kotesovec, May 01 2014 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/(m*(1-x)^m*(1-x^m +x*O(x^n))) )), n)}
    for(n=0, 50, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m*sumdiv(m, d, 1/(1-x +x*O(x^n))^d/d) )), n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} x^n * Sum_{d|n} 1/(d*(1-x)^d) ).
G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 35*x^5 + 76*x^6 + 162*x^7 +...
where
log(A(x)) = x/((1-x)*(1-x)) + x^2/(2*(1-x)^2*(1-x^2)) + x^3/(3*(1-x)^3*(1-x^3)) + x^4/(4*(1-x)^4*(1-x^4)) + x^5/(5*(1-x)^5*(1-x^5)) +...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 56*x^5/5 + 107*x^6/6 + 197*x^7/7 + 365*x^8/8 + 679*x^9/9 + 1280*x^10/10 +...
a(n) = A238350(n*(n+3)/2,n), a(n) is the number of compositions of n*(n+3)/2 with exactly n fixed points. - Alois P. Heinz, Apr 11 2014
a(n) ~ c * 2^n, where c = 1/(2*A048651) = 1.73137330972753180576... - Vaclav Kotesovec, May 01 2014
G.f.: Product {n >= 1} 1/(1 - x^n/(1 - x)). Row sums of A253829. - Peter Bala, Jan 20 2015

A276987 Decimal expansion of (phi-1)_inf = (1/phi)_inf, where (q)_inf is the q-Pochhammer symbol, phi = (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

1, 2, 0, 8, 0, 1, 9, 2, 1, 8, 6, 1, 7, 0, 6, 1, 2, 9, 4, 2, 3, 7, 2, 3, 1, 5, 6, 9, 8, 8, 7, 9, 2, 0, 5, 6, 3, 0, 4, 3, 9, 9, 2, 5, 1, 6, 7, 9, 4, 0, 6, 9, 1, 3, 6, 6, 9, 7, 9, 2, 1, 5, 6, 9, 6, 2, 0, 8, 1, 0, 2, 1, 2, 3, 5, 7, 9, 0, 2, 4, 8, 8, 8, 7, 3, 9, 5, 1, 8, 4, 5, 5, 1, 1, 7, 8, 9, 7, 5, 2
Offset: 0

Views

Author

Vladimir Reshetnikov, Sep 24 2016

Keywords

Comments

(1/phi)_inf appears as a coefficient in asymptotics of A274983, A274985.

Examples

			0.1208019218617061294237231569887920563...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[1/GoldenRatio], 10, 100][[1]]

Formula

(1/phi)inf = Product{k > 0} (1 - 1/phi^k).

A306565 Expansion of Product_{k>=1} (1 - x^k * (1 + x)).

Original entry on oeis.org

1, -1, -2, -1, 1, 3, 4, 3, 1, -2, -6, -8, -8, -8, -5, 2, 8, 12, 17, 22, 23, 17, 7, 0, -7, -22, -40, -51, -53, -49, -45, -42, -30, -4, 30, 65, 90, 100, 112, 137, 157, 152, 120, 71, 18, -33, -80, -125, -187, -275, -357, -401, -407, -380, -327, -269, -221, -171, -75, 102, 322, 515, 669, 801
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2019

Keywords

Crossrefs

Convolution inverse of A227681.
Cf. A160571.

Programs

  • Mathematica
    m = 63; CoefficientList[Series[Product[1 - x^k * (1 + x), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k*(1+x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(-sum(k=1, N, x^k*sumdiv(k, d, (1+x)^d/d))))

Formula

G.f.: exp( - Sum_{k>=1} x^k * Sum_{d|k} (1+x)^d / d).

A336975 Expansion of Product_{k>=1} 1/(1 - x^k * (k + x)).

Original entry on oeis.org

1, 1, 4, 9, 22, 47, 107, 221, 468, 953, 1932, 3814, 7560, 14625, 28192, 53757, 101827, 190907, 356362, 659716, 1215314, 2224968, 4053914, 7346367, 13260001, 23822114, 42629786, 75991017, 134991954, 238948942, 421656911, 741750026, 1301116634, 2275985891, 3971022904
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 34; CoefficientList[Series[Product[1/(1 - x^k*(k + x)), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 01 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k*(k+x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, (k/d+x)^d/d))))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (k/d + x)^d / d).
a(n) ~ c * n * phi^(n+1) / 5, where c = Product_{k>=3} 1/(1 - 1/phi^k*(k + 1/phi)) = 167.5661037860673786430316975350024960626825333609486463342... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 06 2021

A336976 Expansion of Product_{k>=1} 1/(1 - x^k * (1 + k*x)).

Original entry on oeis.org

1, 1, 3, 7, 15, 32, 65, 131, 260, 501, 965, 1825, 3419, 6326, 11652, 21230, 38405, 69015, 123334, 218980, 386809, 679757, 1189360, 2071761, 3594325, 6211826, 10698409, 18363038, 31420994, 53605525, 91198970, 154746133, 261929303, 442310873, 745264674, 1253081340, 2102754561
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2020

Keywords

Crossrefs

Programs

  • Mathematica
    m = 36; CoefficientList[Series[Product[1/(1 - x^k*(1 + k*x)), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 01 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k*(1+k*x)))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, (1+k/d*x)^d/d))))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (1 + k/d * x)^d / d).
a(n) ~ c * phi^(n+1) / sqrt(5), where c = Product_{k>=2} 1/(1 - 1/phi^k*(1 + k/phi)) = 167.5661037860673786430316975350024960626825333609486463342... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 06 2021

A306749 Expansion of Product_{k>=1} 1/(1 - x^k * (1 - x)).

Original entry on oeis.org

1, 1, 1, 0, 0, -1, 1, -1, 2, -2, 2, -4, 6, -8, 11, -13, 16, -23, 32, -44, 61, -80, 102, -133, 178, -243, 331, -441, 579, -759, 1001, -1335, 1792, -2398, 3186, -4205, 5537, -7320, 9734, -12975, 17266, -22893, 30267, -40004, 52968, -70282, 93348, -123900, 164179, -217277
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    m = 49; CoefficientList[Series[Product[1/(1 - x^k * (1 - x)), {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k*(1-x)))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (1 - x)^d/d). - Ilya Gutkovskiy, Apr 16 2019

A307676 Expansion of Product_{k>=1} (1 - x^k*(1 - x))/(1 - x^k*(1 + x)).

Original entry on oeis.org

1, 0, 2, 4, 6, 14, 22, 46, 74, 138, 236, 406, 698, 1182, 1994, 3342, 5590, 9274, 15386, 25380, 41818, 68670, 112586, 184210, 300940, 490962, 800026, 1302278, 2118008, 3442042, 5590092, 9073632, 14720738, 23872776, 38700910, 62720726, 101622398, 164617032
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^k*(1 - x))/(1 - x^k*(1 + x)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k*(1-x))/(1-x^k*(1+x))))
    
  • PARI
    N=66; x='x+O('x^N); Vec(exp(sum(k=1, N, x^k*sumdiv(k, d, ((1+x)^d-(1-x)^d)/d))))

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} ((1+x)^d - (1-x)^d)/d).
a(n) ~ phi^(n+4) / sqrt(5), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 31 2021

A309172 Expansion of Product_{k>=1} 1/(1 - (1 + x + x^2) * x^k).

Original entry on oeis.org

1, 1, 3, 7, 15, 31, 64, 128, 254, 496, 961, 1844, 3516, 6662, 12564, 23593, 44153, 82385, 153351, 284857, 528235, 978148, 1809120, 3342722, 6171318, 11385733, 20994298, 38693809, 71288111, 131297855, 241761727, 445068646, 819205061, 1507641487, 2774307387, 5104712633
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[1/(1 - (1 + x + x^2) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Exp[Sum[x^k Sum[(1 + x + x^2)^d/d, {d, Divisors[k]}], {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (1 + x + x^2)^d/d).
a(n) ~ 1/((1 + 2*r + 3*r^2) * QPochhammer[r] * r^(n+1)), where r = A192918. - Vaclav Kotesovec, Jul 16 2019
Showing 1-10 of 12 results. Next