A227681
G.f.: exp( Sum_{n>=1} x^n * (1+x)^n / (n*(1-x^n)) ).
Original entry on oeis.org
1, 1, 3, 6, 12, 23, 43, 79, 142, 252, 442, 766, 1316, 2244, 3799, 6393, 10704, 17841, 29618, 49000, 80823, 132964, 218242, 357501, 584608, 954553, 1556575, 2535425, 4125805, 6708143, 10898897, 17696749, 28719276, 46586050, 75538702, 122444483, 198420445, 321461918
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 12*x^4 + 23*x^5 + 43*x^6 + 79*x^7 +...
where
log(A(x)) = x*(1+x)/(1-x) + x^2*(1+x)^2/(2*(1-x^2)) + x^3*(1+x)^3/(3*(1-x^3)) + x^4*(1+x)^4/(4*(1-x^4)) + x^5*(1+x)^5/(5*(1-x^5)) +...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 10*x^3/3 + 17*x^4/4 + 26*x^5/5 + 38*x^6/6 + 57*x^7/7 + 81*x^8/8 + 118*x^9/9 + 180*x^10/10 +...
-
nmax = 50; CoefficientList[Series[Product[1/(1 - x^k*(1 + x)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2021 *)
-
{a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*(1+x)^m/(1-x^m +x*O(x^n)) )), n)}
for(n=0, 50, print1(a(n), ", "))
-
{a(n)=polcoeff(exp(sum(m=1, n+1, x^m*sumdiv(m, d, (1+x +x*O(x^n))^d/d) )), n)}
for(n=0, 50, print1(a(n), ", "))
A123741
A second version of Fibonacci factorials besides A003266.
Original entry on oeis.org
1, 2, 24, 630, 52800, 11381760, 6738443712, 10487895163200, 43294107630090240, 469590163875486482400, 13388418681612808458240000, 1001088091286168023193223168000, 196239953628635168336022309340569600
Offset: 1
n=3: (5-1)*(5-2)*(5-3) = 4*3*2 = 24;
n=4: (8-1)*(8-2)*(8-3)*(8-5) = 7*6*5*3 = 630.
-
F:=Fibonacci;; List([1..20], n-> Product([1..n], j-> F(n+2) - F(j+1))); # G. C. Greubel, Aug 10 2019
-
F:=Fibonacci; [(&*[F(n+2)-F(j+1): j in [1..n]]): n in [1..20]] // G. C. Greubel, Aug 10 2019
-
with(combinat): seq(mul(fibonacci(n+2)-fibonacci(j+1), j = 1..n), n = 1 .. 20); # G. C. Greubel, Aug 10 2019
-
With[{F=Fibonacci}, Table[Product[F[n+2]-F[j+1],{j,n}], {n,20}]] (* G. C. Greubel, Aug 10 2019 *)
-
vector(20, n, f=fibonacci; prod(j=1,n, f(n+2)-f(j+1))) \\ G. C. Greubel, Aug 10 2019
-
f=fibonacci; [prod(f(n+2)-f(j+1) for j in (1..n)) for n in (1..20)] # G. C. Greubel, Aug 10 2019
A274983
a(n) = [n]phi! + [n]{1-phi}!, where [n]_q! is the q-factorial, phi = (1+sqrt(5))/2.
Original entry on oeis.org
2, 2, 3, 14, 130, 2120, 58120, 2636360, 196132320, 23805331920, 4698862837680, 1505416321070640, 781888977967152000, 657866357975539785600, 896265744457831561756800, 1976607903479486428467148800, 7055269158071576119808840371200
Offset: 0
For n = 3, [3]_phi! = 1060 + 474*sqrt(5), so a(5) = 2*1060 = 2120 and A274985(5) = 2*474 = 948.
-
Round@Table[QFactorial[n, GoldenRatio] + QFactorial[n, 1 - GoldenRatio], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
A274985
a(n) = ([n]phi! - [n]{1-phi}!)/sqrt(5), where [n]_q! is the q-factorial, phi = (1+sqrt(5))/2.
Original entry on oeis.org
0, 0, 1, 6, 58, 948, 25992, 1179016, 87713040, 10646068080, 2101395344400, 673242645670320, 349671381118477440, 294206779308703578240, 400822226102433353285760, 883965927408694948620295680, 3155212287401150653204012531200
Offset: 0
For n = 3, [3]_phi! = 1060 + 474*sqrt(5), so A274983(5) = 2*1060 = 2120 and a(5) = 2*474 = 948.
-
Round@Table[(QFactorial[n, GoldenRatio] - QFactorial[n, 1 - GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
A276990
a(n) = (phi; phi)_n + (1-phi; 1-phi)_n, where (q; q)_n is the q-Pochhammer symbol, phi = (1+sqrt(5))/2 is the golden ratio.
Original entry on oeis.org
2, 1, 2, -2, 20, -190, 3240, -90800, 4174920, -313173840, 38204662320, -7564715117520, 2428250059593600, -1262694691720176000, 1063187432567808662400, -1449125250052431355430400, 3196769645011428154428883200, -11412468527893653264760022630400
Offset: 0
-
Round@Table[QPochhammer[GoldenRatio, GoldenRatio, n] + QPochhammer[1 - GoldenRatio, 1 - GoldenRatio, n], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
A276991
a(n) = ((phi; phi)_n - (1-phi; 1-phi)_n)/sqrt(5), where (q; q)_n is the q-Pochhammer symbol, phi = (1+sqrt(5))/2 is the golden ratio.
Original entry on oeis.org
0, -1, 0, -2, 8, -86, 1448, -40608, 1867080, -140055600, 17085644400, -3383043446640, 1085946439923840, -564694233102890880, 475471874409018791040, -648068513405723438730240, 1429638846930684965104992000, -5103811083889432701541321459200
Offset: 0
-
Round@Table[(QPochhammer[GoldenRatio, GoldenRatio, n] - QPochhammer[1 - GoldenRatio, 1 - GoldenRatio, n])/Sqrt[5], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
Showing 1-6 of 6 results.
Comments