cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A116610 Values of n such that prime(2*n) mod 12 = 11.

Original entry on oeis.org

10, 14, 16, 26, 27, 28, 32, 36, 38, 43, 46, 47, 48, 59, 60, 62, 64, 66, 72, 73, 75, 77, 78, 82, 83, 91, 95, 96, 100, 104, 107, 114, 115, 118, 120, 123, 124, 125, 128, 131, 140, 143, 146, 147, 152, 159, 167, 168, 173, 179, 180, 182, 185, 186, 188, 193, 195, 205, 210
Offset: 1

Views

Author

Roger L. Bagula, Mar 29 2006

Keywords

Examples

			26 is in the sequence because the 52nd prime is 239 and 239 mod 12=11.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if ithprime(2*n) mod 12 = 11 then n else fi end: seq(a(n),n=1..250);
  • Mathematica
    Select[Range[250],Mod[Prime[2#],12]==11&]  (* Harvey P. Dale, Jan 30 2011 *)
  • PARI
    for(n=1,999, prime(2*n)%12==11 & print1(n",")) \\ M. F. Hasler, May 22 2009

Formula

A116610 = 1/2 { even terms in A160593 = A000720(A068231) } . - M. F. Hasler, May 22 2009

Extensions

Edited by N. J. A. Sloane, Apr 05 2006

A116612 Values of n such that p(2n+1) mod 12 = 1, where p(j) denotes the j-th prime.

Original entry on oeis.org

10, 12, 14, 18, 26, 29, 32, 60, 63, 72, 73, 75, 79, 84, 91, 93, 94, 95, 98, 101, 105, 110, 115, 118, 125, 128, 131, 135, 136, 137, 139, 143, 147, 150, 159, 165, 168, 169, 170, 173, 177, 180, 184, 187, 195, 200, 203, 205, 207, 212, 215, 217, 218, 221, 222, 224
Offset: 1

Views

Author

Roger L. Bagula, Mar 29 2006

Keywords

Examples

			29 is in the sequence because the 59th prime is 277 and 277 mod 12=1.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if ithprime(2*n+1) mod 12 = 1 then n else fi end: seq(a(n),n=0..250);
  • Mathematica
    Select[Range[0, 2000], Mod[Prime[2*# + 1], 12] == 1 &] (* G. C. Greubel, Oct 27 2017 *)
  • PARI
    for(n=1,999, prime(2*n+1)%12==1 & print1(n",")) \\ M. F. Hasler, May 22 2009

Formula

A116612 = integer part of 1/2 * { odd terms in A160594 = A000720(A068228) }. - M. F. Hasler, May 22 2009

Extensions

Edited by N. J. A. Sloane, Apr 05 2006

A116613 Values of n such that prime(2n+1) mod 12 = 5.

Original entry on oeis.org

1, 3, 6, 16, 17, 22, 25, 27, 28, 35, 38, 39, 43, 44, 48, 56, 59, 61, 67, 68, 69, 82, 99, 100, 104, 111, 113, 122, 127, 129, 132, 133, 145, 146, 156, 161, 162, 171, 172, 176, 179, 183, 186, 189, 190, 202, 209, 210, 234, 238, 250, 251, 258, 261, 272, 275, 280, 284
Offset: 1

Views

Author

Roger L. Bagula, Mar 29 2006

Keywords

Examples

			25 is in the sequence because the 51st prime is 233 and 233 mod 12 = 5.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if ithprime(2*n+1) mod 12 = 5 then n else fi end: seq(a(n),n=0..300);
  • Mathematica
    Select[Range[0, 500], Mod[Prime[2*# + 1], 12] == 5 &] (* G. C. Greubel, Nov 19 2017 *)
  • PARI
    for(n=1,999, prime(2*n+1)%12==5 & print1(n",")) \\ M. F. Hasler, May 22 2009

Formula

Equals the integer part of { odd terms in A160591 = A000720(A040117) } / 2. - M. F. Hasler, May 22 2009

Extensions

Edited by N. J. A. Sloane, Apr 05 2006

A116614 Values of n such that prime(2n) mod 12 = 1.

Original entry on oeis.org

3, 6, 9, 21, 22, 25, 34, 35, 37, 39, 40, 41, 42, 44, 50, 53, 55, 56, 61, 65, 67, 68, 84, 86, 87, 90, 99, 102, 108, 113, 122, 127, 130, 132, 139, 142, 153, 154, 155, 158, 161, 163, 176, 183, 189, 190, 194, 198, 211, 219, 225, 232, 233, 237, 238, 248, 258, 259, 278
Offset: 1

Views

Author

Roger L. Bagula, Mar 29 2006

Keywords

Examples

			53 is in the sequence because the 106th prime is 577 and 577 mod 12 = 1.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if ithprime(2*n) mod 12 = 1 then n else fi end: seq(a(n),n=1..300);
  • Mathematica
    Select[Range[1, 500], Mod[Prime[2*#], 12] == 1 &] (* G. C. Greubel, Nov 19 2017 *)
  • PARI
    for(n=1,999, prime(2*n)%12==1 & print1(n",")) \\ M. F. Hasler, May 22 2009

Formula

Equals (1/2) * { even terms in A160594 = A000720(A068228) }. - M. F. Hasler, May 22 2009

Extensions

Edited by N. J. A. Sloane, Apr 05 2006

A116615 Values of n such that prime(2n) mod 12 = 7.

Original entry on oeis.org

2, 4, 7, 11, 17, 18, 19, 23, 24, 29, 45, 57, 69, 94, 101, 105, 111, 112, 116, 121, 129, 133, 136, 137, 138, 141, 150, 157, 162, 164, 170, 172, 174, 177, 184, 187, 197, 203, 207, 209, 220, 231, 235, 239, 245, 250, 251, 252, 254, 255, 260, 261, 270, 273, 276, 283
Offset: 1

Views

Author

Roger L. Bagula, Mar 29 2006

Keywords

Examples

			23 is in the sequence because the 46th prime is 199 and 199 mod 12=7.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if ithprime(2*n) mod 12 = 7 then n else fi end: seq(a(n),n=1..300);
  • Mathematica
    Select[Range[1, 500], Mod[Prime[2*#], 12] == 7 &] (* G. C. Greubel, Nov 19 2017 *)
  • PARI
    for( n=1,999, prime(2*n)%12==7 & print1(n",")) \\ M. F. Hasler, May 22 2009

Formula

Equals (1/2) * { even terms in A160592 = A000720(A068229) }. - M. F. Hasler, May 22 2009

Extensions

Edited by N. J. A. Sloane, Apr 05 2006

A116616 Values of n such that prime(2n+1) mod 12 = 7.

Original entry on oeis.org

5, 9, 13, 15, 23, 30, 31, 33, 36, 37, 42, 46, 47, 49, 50, 52, 55, 57, 58, 62, 64, 65, 66, 70, 71, 74, 76, 77, 78, 81, 83, 87, 88, 89, 90, 96, 103, 106, 108, 114, 116, 117, 121, 123, 124, 130, 134, 142, 144, 148, 151, 152, 160, 163, 166, 167, 175, 182, 185, 191, 192
Offset: 1

Views

Author

Roger L. Bagula, Mar 29 2006

Keywords

Examples

			33 is in the sequence because the 67th prime is 331 and 331 mod 12=7.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if ithprime(2*n+1) mod 12 = 7 then n else fi end: seq(a(n),n=0..215);
  • Mathematica
    Select[Range[220], Mod[Prime[2# + 1], 12] == 7 &] (* Stefan Steinerberger, Apr 08 2006 *)
  • PARI
    for(n=1,999, prime(2*n+1)%12==7 & print1(n",")) \\ M. F. Hasler, May 22 2009

Formula

Equals { odd terms in A160592 = A000720(A068229) } / 2, rounded towards zero. - M. F. Hasler, May 22 2009

Extensions

Edited by N. J. A. Sloane, Apr 05 2006
Showing 1-6 of 6 results.