cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A289214 a(n) = n! * Laguerre(n,-8).

Original entry on oeis.org

1, 9, 98, 1238, 17688, 280888, 4894672, 92676144, 1891712384, 41361536384, 963532779264, 23806296960256, 621407739476992, 17078348640463872, 492724294444623872, 14883442560920164352, 469591293625846038528, 15443081743064125505536, 528340631093887891603456
Offset: 0

Views

Author

Alois P. Heinz, Jun 28 2017

Keywords

Crossrefs

Column k=8 of A289192.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(8*x/(1-x))/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 11 2018
  • Maple
    a:= n-> n! * add(binomial(n, i)*8^i/i!, i=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    Table[n!*LaguerreL[n, -8], {n, 0, 20}] (* Indranil Ghosh, Jul 04 2017 *)
  • PARI
    my(x = 'x + O('x^30)); Vec(serlaplace(exp(8*x/(1-x))/(1-x))) \\ Michel Marcus, Jul 04 2017
    
  • PARI
    a(n) = n!*pollaguerre(n, 0, -8); \\ Michel Marcus, Feb 05 2021
    
  • Python
    from mpmath import *
    mp.dps=100
    def a(n): return int(fac(n)*laguerre(n, 0, -8))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017
    

Formula

E.g.f.: exp(8*x/(1-x))/(1-x).
a(n) = n! * Sum_{i=0..n} 8^i/i! * binomial(n,i).
a(n) = n! * A160603(n)/A160604(n).
a(n) ~ exp(-4 + 4*sqrt(2*n) - n) * n^(n + 1/4) / 2^(5/4) * (1 + 451/(96*sqrt(2*n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 8^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020

A160603 Numerator of Laguerre(n, -8).

Original entry on oeis.org

1, 9, 49, 619, 737, 35111, 305917, 1930753, 14779003, 46162429, 139399997, 92993347501, 606843495583, 5559358281401, 240588034396789, 660664176177209, 682418523335551, 471285453584720627, 732894385728160361
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Crossrefs

For denominators see A160604.
Cf. A289214.

Programs

  • Magma
    [Numerator((&+[Binomial(n,k)*(8^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 13 2018
  • Mathematica
    Numerator[Table[LaguerreL[n, -8], {n, 0, 50}]] (* G. C. Greubel, May 13 2018 *)
  • PARI
    for(n=0,30, print1(numerator(sum(k=0,n, binomial(n,k)*(8^k/k!))), ", ")) \\ G. C. Greubel, May 13 2018
    
  • PARI
    a(n) = numerator(pollaguerre(n, 0, -8)); \\ Michel Marcus, Feb 05 2021
    
Showing 1-2 of 2 results.