cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A289211 a(n) = n! * Laguerre(n,-5).

Original entry on oeis.org

1, 6, 47, 446, 4929, 61870, 866695, 13373190, 224995745, 4094022230, 80031878175, 1671426609550, 37116087808225, 872797202471550, 21656891639499575, 565266064058561750, 15476777687220818625, 443409439715399299750, 13263588837009155407375
Offset: 0

Views

Author

Alois P. Heinz, Jun 28 2017

Keywords

Crossrefs

Column k=5 of A289192.

Programs

  • Magma
    [(Factorial(n)*(&+[Binomial(n,k)*(5^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 09 2018
  • Maple
    a:= n-> n! * add(binomial(n, i)*5^i/i!, i=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    [Table[n!*LaguerreL[n,-5], {n,0,50}]] (* G. C. Greubel, May 09 2018 *)
  • PARI
    for(n=0,30, print1(n!*sum(k=0,n, binomial(n,k)*(5^k/k!)), ", ")) \\ G. C. Greubel, May 09 2018
    
  • PARI
    a(n) = n!*pollaguerre(n, 0, -5); \\ Michel Marcus, Feb 05 2021
    

Formula

E.g.f.: exp(5*x/(1-x))/(1-x).
a(n) = n! * Sum_{i=0..n} 5^i/i! * binomial(n,i).
a(n) = n! * A160609(n)/A160610(n).
a(n) ~ exp(-5/2 + 2*sqrt(5*n) - n) * n^(n + 1/4) / (sqrt(2)*5^(1/4)) * (1 + 223/(48*sqrt(5*n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 5^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020

A160610 Denominator of Laguerre(n, -5).

Original entry on oeis.org

1, 1, 2, 3, 8, 12, 144, 56, 8064, 36288, 48384, 798336, 19160064, 41513472, 3487131648, 5230697472, 6199345152, 1422749712384, 51218989645824, 162193467211776, 3892643213082624, 3144057979797504, 599467054814724096
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Crossrefs

For numerators see A160609.
Cf. A289211.

Programs

  • Magma
    [Denominator((&+[Binomial(n,k)*(5^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 09 2018
  • Mathematica
    Denominator[Table[LaguerreL[n, -5], {n, 0, 50}]] (* G. C. Greubel, May 09 2018 *)
  • PARI
    for(n=0,30, print1(denominator(sum(k=0,n, binomial(n,k)*(5^k/k!))), ", ")) \\ G. C. Greubel, May 09 2018
    
  • PARI
    a(n) = denominator(pollaguerre(n, 0, -5)); \\ Michel Marcus, Feb 05 2021
    
Showing 1-2 of 2 results.