A289147 Number of (n+1) X (n+1) binary matrices M with at most one 1 in each of the first n rows and each of the first n columns and M[n+1,n+1] = 0.
1, 5, 34, 286, 2840, 32344, 414160, 5876336, 91356544, 1542401920, 28075364096, 547643910400, 11389266525184, 251428006132736, 5869482147358720, 144413021660821504, 3733822274973040640, 101181690628832198656, 2867011297057247002624, 84764595415605494743040
Offset: 0
Keywords
Examples
a(1) = 5: [0 0] [1 0] [0 1] [0 0] [0 1] [0 0] [0 0] [0 0] [1 0] [1 0] . . a(2) = 34: [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1] [0 0 0] [0 1 0] [1 0 0] [1 1 0] [0 0 0] [0 1 0] [1 0 0] . [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1] [0 1 0] [0 1 0] [1 0 0] [1 0 0] [0 0 0] [0 0 0] [1 1 0] [0 0 0] [1 0 0] [0 0 0] [0 1 0] [0 0 0] [0 1 0] . [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1] [0 0 1] [0 1 0] [1 0 0] [1 1 0] [0 0 0] [0 1 0] [1 0 0] [1 1 0] [0 0 0] . [0 0 1] [0 0 1] [0 0 1] [0 1 0] [0 1 0] [0 1 0] [0 1 0] [0 1 0] [1 0 0] [1 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [1 0 0] [0 0 0] [0 1 0] [0 0 0] [1 0 0] [0 0 0] [1 0 0] . [0 1 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0] [1 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 1 0] [0 0 0] [0 0 0] [0 1 0] [0 0 0] [0 1 0] [0 0 0] .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..437
- Eric Weisstein's World of Mathematics, Laguerre Polynomial
- Wikipedia, Laguerre polynomials
- Index entries for sequences related to Laguerre polynomials
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 4*n+1, (2*n+3)*a(n-1)-(n-1)^2*a(n-2)) end: seq(a(n), n=0..25); # second Maple program: a:= n-> n-> n! * add(binomial(n, i)*4^i/i!, i=0..n): seq(a(n), n=0..25); # third Maple program: a:= n-> n!* simplify(LaguerreL(n, -4), 'LaguerreL'): seq(a(n), n=0..25);
-
Mathematica
Table[n! LaguerreL[n, -4], {n, 0, 30}] (* Indranil Ghosh, Jul 06 2017 *)
-
Python
from mpmath import * mp.dps=150 l=chop(taylor(lambda x:exp(4*x/(1-x))/(1-x), 0, 31)) print([int(fac(i)*l[i]) for i in range(len(l))]) # Indranil Ghosh, Jul 06 2017 # or # from mpmath import * mp.dps=100 def a(n): return int(fac(n)*laguerre(n, 0, -4)) print([a(n) for n in range(31)]) # Indranil Ghosh, Jul 06 2017
Formula
E.g.f.: exp(4*x/(1-x))/(1-x).
a(n) = Sum_{i=0..n} i! * (2^(n-i)*binomial(n,i))^2.
a(n) = Sum_{i=0..n} (n-i)! * 4^i * binomial(n,i)^2.
a(n) = n! * Sum_{i=0..n} 4^i/i! * binomial(n,i).
a(n) = (2*n+3)*a(n-1)-(n-1)^2*a(n-2) for n>=2, a(n) = 4*n+1 for n<2.
a(n) ~ exp(-2 + 4*sqrt(n) - n) * n^(n + 1/4) / 2 * (1 + 163/(96*sqrt(n))). - Vaclav Kotesovec, Nov 13 2017
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * Sum_{n>=0} 4^n * x^n / (n!)^2. - Ilya Gutkovskiy, Jul 17 2020
Comments