cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295382 Expansion of e.g.f. exp(-2*x/(1 - x))/(1 - x).

Original entry on oeis.org

1, -1, -2, -2, 8, 88, 592, 3344, 14464, 2944, -1121536, -21603584, -317969408, -4202380288, -51322677248, -562045749248, -4751724347392, -3419742961664, 1260396818661376, 45221885372727296, 1218206507254153216, 29421299633821057024, 669044215287581769728, 14528992234596624498688
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2017

Keywords

Crossrefs

Column k=2 of A295381.

Programs

  • Magma
    [Factorial(n)*(&+[(-1)^k*Binomial(n,k)*2^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
  • Maple
    a:=series(exp(-2*x/(1-x))/(1-x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[-2 x/(1 - x)]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! LaguerreL[n, 2], {n, 0, 23}]
    Table[n! Hypergeometric1F1[-n, 1, 2], {n, 0, 23}]
    Table[n! Sum[(-1)^k Binomial[n, k] 2^k/k!, {k, 0, n}], {n, 0, 23}]
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(-2*x/(1-x))/(1-x))) \\ G. C. Greubel, Feb 06 2018
    

Formula

E.g.f.: exp(-2*x/(1 - x))/(1 - x).
a(n) = n!*Laguerre(n,2).
a(n) = n!*Sum_{k=0..n} (-1)^k*binomial(n,k)*2^k/k!.
a(n) = n!*A160623(n)/A160624(n).
a(n) = Sum_{k=0..n} (-2)^(n-k)*k!*binomial(n,k)^2. - Ridouane Oudra, Jul 08 2025

A160624 Denominator of Laguerre(n, 2).

Original entry on oeis.org

1, 1, 1, 3, 3, 15, 45, 315, 315, 2835, 14175, 155925, 467775, 6081075, 42567525, 638512875, 58046625, 10854718875, 8881133625, 1856156927625, 9280784638125, 194896477400625, 2143861251406875, 3792985290950625, 147926426347074375
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Examples

			1, -1, -1, -1/3, 1/3, 11/15, 37/45, 209/315, 113/315, 23/2835, -4381/14175, -84389/155925, -310517/467775, ... = A160623/A160624.
		

Crossrefs

For numerators see A160623. Different from A049606.
Cf. A295382.

Programs

  • Magma
    [Denominator((&+[Binomial(n,k)*((-2)^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 06 2018
  • Maple
    seq(denom(orthopoly[L](n,2)), n=0 .. 100); # Robert Israel, Jul 23 2015
  • Mathematica
    Denominator[LaguerreL[Range[0,30],2]] (* Vincenzo Librandi, May 24 2012 *)
  • PARI
    for(n=0,30, print1(denominator(sum(k=0,n, binomial(n,k)*((-2)^k/k!))), ", ")) \\ G. C. Greubel, May 06 2018
    
  • PARI
    a(n) = denominator(pollaguerre(n, 0, 2)); \\ Michel Marcus, Feb 05 2021
    

Formula

Denominators of coefficients in expansion of exp(-2*x/(1 - x))/(1 - x). - Ilya Gutkovskiy, Aug 29 2018
Showing 1-2 of 2 results.