A160668 Distance between prime(n) and the next higher power of 10.
8, 7, 5, 3, 89, 87, 83, 81, 77, 71, 69, 63, 59, 57, 53, 47, 41, 39, 33, 29, 27, 21, 17, 11, 3, 899, 897, 893, 891, 887, 873, 869, 863, 861, 851, 849, 843, 837, 833, 827, 821, 819, 809, 807, 803, 801, 789, 777, 773, 771, 767, 761, 759, 749, 743, 737, 731, 729, 723
Offset: 1
Examples
a(1)=8 because 10^1=10, and 10-2, 1st prime 2, = 8; a(5)=89 because 10^2=100 and 100-11, 5th prime 11, = 89.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[10^(Ceiling(Log(NthPrime(n))/Log(10))) - NthPrime(n): n in [1..30]]; // G. C. Greubel, May 02 2018
-
Maple
a:= n-> (p-> 10^length(p)-p)(ithprime(n)): seq(a(n), n=1..100); # Alois P. Heinz, Dec 08 2017
-
Mathematica
Table[10^Ceiling[Log[Prime[n]]/Log[10]] - Prime[n], {n, 1, 100}] (* G. C. Greubel, May 02 2018 *)
-
PARI
a(n) = 10^ceil(log(prime(n))/log(10)) - prime(n); \\ Michel Marcus, Dec 08 2017
-
UBASIC
20 N=3:print N:C=2 30 A=3:S=sqrt(N) 40 B=N/A 50 if A*B=int(N) then 70 60 A=A+2:if A
Enoch Haga, May 22 2009
Comments