cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160805 a(n) = (2*n^3 + 9*n^2 + n + 24) / 6.

Original entry on oeis.org

4, 6, 13, 27, 50, 84, 131, 193, 272, 370, 489, 631, 798, 992, 1215, 1469, 1756, 2078, 2437, 2835, 3274, 3756, 4283, 4857, 5480, 6154, 6881, 7663, 8502, 9400, 10359, 11381, 12468, 13622, 14845, 16139, 17506, 18948, 20467, 22065, 23744, 25506, 27353, 29287
Offset: 0

Views

Author

Reinhard Zumkeller, May 26 2009

Keywords

Comments

Arithmetic progression of third order; a(n+1)-a(n) = A008865(n+2);
a(n) = A101986(n) + 4.

References

  • R. Courant, Differential and Integral Calculus Vol. I (Blackie&Son, 1937), ch. I.4, Example 5, p.29.

Crossrefs

Programs

  • Magma
    [(2*n^3+9*n^2+n+24)/6: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
    
  • Maple
    A160805:=n->(2*n^3+9*n^2+n+24)/6: seq(A160805(n), n=0..80); # Wesley Ivan Hurt, Aug 29 2015
  • Mathematica
    Table[(2 n^3 + 9 n^2 + n + 24)/6, {n, 0, 60}]
    CoefficientList[Series[(4 - 10*x + 13*x^2 - 5*x^3)/(x - 1)^4, {x, 0, 60}], x] (* Wesley Ivan Hurt, Aug 29 2015 *)
  • PARI
    first(m)=vector(m,i,i--;(2*i^3 + 9*i^2 + i + 24) / 6) \\ Anders Hellström, Aug 29 2015

Formula

a(n) = (2*n^3 + 9*n^2 + n + 24) / 6.
From Wesley Ivan Hurt, Aug 29 2015: (Start)
G.f.: (4-10*x+13*x^2-5*x^3)/(x-1)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4), n>3. (End)