cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160828 a(n) = 4*n^4 + 24*n^3 + 84*n^2 + 144*n + 98.

Original entry on oeis.org

98, 354, 978, 2258, 4578, 8418, 14354, 23058, 35298, 51938, 73938, 102354, 138338, 183138, 238098, 304658, 384354, 478818, 589778, 719058, 868578, 1040354, 1236498, 1459218, 1710818, 1993698, 2310354, 2663378, 3055458, 3489378, 3968018, 4494354
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), May 27 2009

Keywords

Comments

Sums of 4 consecutive fourth powers.
Subsequence of A217844. - Michel Marcus, Jun 30 2013

Programs

  • Magma
    [4*n^4+24*n^3+84*n^2+144*n+98: n in [0..40]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    A000583 := proc(n) n^4 ; end: A160828 := proc(n) add(A000583(i),i=n..n+3) ; end: seq(A160828(n),n=0..40) ; # R. J. Mathar, May 29 2009
  • Mathematica
    Table[4n^4+24n^3+84n^2+144n+98,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{98,354,978,2258,4578},40] (* Harvey P. Dale, Mar 25 2012 *)
    CoefficientList[Series[(18*x^4 -72*x^3 +188*x^2 -136*x +98)/(1-x)^5, {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2018 *)
  • PARI
    x='x+O('x^50); Vec((18*x^4 -72*x^3 +188*x^2 -136*x +98)/(1-x)^5) \\ G. C. Greubel, Apr 30 2018
  • Python
    A160828_list, m = [], [96, 0, 80, 80, 98]
    for _ in range(10**2):
        A160828_list.append(m[-1])
        for i in range(4):
            m[i+1] += m[i] # Chai Wah Wu, Jan 23 2016
    

Formula

a(n) = Sum_{i=0..3} A000583(n+i) = Sum_{j=n..n+3} j^4 = A160827(n) + (n+3)^4.
G.f.: (18*x^4 - 72*x^3 + 188*x^2 - 136*x + 98)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 14 2009
a(0)=98, a(1)=354, a(2)=978, a(3)=2258, a(4)=4578, a(n)=5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Mar 25 2012
E.g.f.: 2*(49 + 128*x + 92*x^2 + 24*x^3 + 2*x^4)*exp(x). - G. C. Greubel, Apr 30 2018

Extensions

Edited and corrected by R. J. Mathar, May 29 2009