A160840 Expansion of (1+147*x+1230*x^2+1885*x^3+714*x^4+63*x^5+x^6)/(1-x)^7.
1, 154, 2287, 14695, 60907, 192493, 505912, 1163401, 2417905, 4642048, 8361145, 14290255, 23375275, 36838075, 56225674, 83463457, 120912433, 171430534, 238437955, 325986535, 438833179, 582517321, 763442428, 988961545, 1267466881
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[449*n^6/80 +1803*n^5/80 +713*n^4/16 +745*n^3/16 +1053*n^2/40 +37*n/5 +1: n in [0..30]]; // Vincenzo Librandi, Sep 17 2011
-
Maple
seq(coeff(series((1+147*x+1230*x^2+1885*x^3+714*x^4+63*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
-
Mathematica
LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 154, 2287, 14695, 60907, 192493, 505912}, 30] (* G. C. Greubel, Apr 28 2018 *) CoefficientList[Series[(1+147x+1230x^2+1885x^3+714x^4+63x^5+x^6)/(1-x)^7,{x,0,30}],x] (* Harvey P. Dale, Dec 30 2022 *)
-
PARI
x='x+O('x^30); Vec((1+147*x+1230*x^2+1885*x^3+714*x^4 +63*x^5 +x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018
Formula
a(n) = 449*n^6/80 +1803*n^5/80 +713*n^4/16 +745*n^3/16 +1053*n^2/40 +37*n/5 +1. - R. J. Mathar, Sep 11 2011
Comments