cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160841 Expansion of (1+147*x+1230*x^2+1915*x^3+744*x^4+66*x^5+x^6)/(1-x)^7.

Original entry on oeis.org

1, 154, 2287, 14725, 61147, 193546, 509293, 1172305, 2438317, 4684258, 8441731, 14434597, 23620663, 37237474, 56852209, 84415681, 122320441, 173462986, 241310071, 329969125, 444262771, 589807450, 773096149, 1001585233
Offset: 0

Views

Author

N. J. A. Sloane, Nov 18 2009

Keywords

Comments

Source: the De Loera et al. article and the Haws website listed in A160747.

Programs

  • Magma
    [1+3*n*(n+1)*(38*n^4+112*n^3+183*n^2+127*n+50)/20: n in [0..30]]; // Vincenzo Librandi, Sep 19 2011
    
  • Maple
    seq(coeff(series((1+147*x+1230*x^2+1915*x^3+744*x^4+66*x^5+x^6)/(1-x)^7, x,n+1),x,n),n=0..25); # Muniru A Asiru, Apr 29 2018
  • Mathematica
    CoefficientList[Series[(1+147x+1230x^2+1915x^3+744x^4+66x^5+x^6)/(1-x)^7, {x,0,30}], x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1, 154, 2287,14725,61147,193546,509293},30] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    x='x+O('x^30); Vec((1+147*x+1230*x^2+1915*x^3+744*x^4+66*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

Formula

a(n) = 1+3*n*(n+1)*(38*n^4+112*n^3+183*n^2+127*n+50)/20. - R. J. Mathar, Sep 17 2011
a(0)=1, a(1)=154, a(2)=2287, a(3)=14725, a(4)=61147, a(5)=193546, a(6)=509293, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)- 7*a(n-6)+ a(n-7). - Harvey P. Dale, Feb 11 2015