cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161007 a(n+1) = 2*a(n) + 16*a(n-1), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, 20, 72, 464, 2080, 11584, 56448, 298240, 1499648, 7771136, 39536640, 203411456, 1039409152, 5333401600, 27297349632, 139929124864, 716615843840, 3672097685504, 18810048872448, 96373660712960, 493708103385088, 2529394778177536, 12958119210516480
Offset: 0

Views

Author

Sture Sjöstedt, Jun 02 2009

Keywords

Crossrefs

Cf. A006131, A010473 (sqrt(17)).

Programs

  • Magma
    [n le 2 select n-1 else 2*(Self(n-1) +8*Self(n-2)): n in [1..41]]; // G. C. Greubel, Oct 15 2022
    
  • Mathematica
    LinearRecurrence[{2, 16}, {0, 1}, 50] (* T. D. Noe, Nov 07 2011 *)
  • PARI
    concat(0, Vec(-x/(16*x^2+2*x-1) + O(x^40))) \\ Colin Barker, Jul 01 2015
    
  • SageMath
    A161007=BinaryRecurrenceSequence(2,16,0,1)
    [A161007(n) for n in range(41)] # G. C. Greubel, Oct 15 2022

Formula

a(n) = ((1+sqrt(17))^n - (1-sqrt(17))^n)/(2*sqrt(17)).
Limit_{n -> oo} a(n+1)/a(n) = 1 + sqrt(17).
G.f.: x / (1 - 2*x - 16*x^2). - Colin Barker, Jul 01 2015
a(n) = 2^(n-1)*A006131(n-1). - R. J. Mathar, Mar 08 2021
a(n) = (4*i)^n*ChebyshevU(n, -i/4). - G. C. Greubel, Oct 15 2022