cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A133356 a(n) = 2*a(n-1) + 16*a(n-2) for n>1, a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 18, 52, 392, 1616, 9504, 44864, 241792, 1201408, 6271488, 31765504, 163874816, 835997696, 4293992448, 21963948032, 112631775232, 576686718976, 2955481841664, 15137951186944, 77563611840512, 397334442672128
Offset: 0

Views

Author

Philippe Deléham, Dec 21 2007

Keywords

Comments

Binomial transform of A001026 (powers of 17), with interpolated zeros .

Crossrefs

First differences of A161007.

Programs

Formula

G.f.: (1-x)/(1-2*x-16*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*17^(n-k). - Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=17, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
a(n) = (4*i)^(n-1)*(4*i*ChebyshevU(n, -i/4) - ChebyshevU(n-1, -i/4)) = A161007(n) - A161007(n-1). - G. C. Greubel, Oct 15 2022

A123004 Expansion of g.f. x^2/(1 - 2*x - 25*x^2).

Original entry on oeis.org

0, 1, 2, 29, 108, 941, 4582, 32689, 179928, 1177081, 6852362, 43131749, 257572548, 1593438821, 9626191342, 59088353209, 358831489968, 2194871810161, 13360530869522, 81592856993069, 497198985724188, 3034219396275101
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 23 2006

Keywords

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.

Crossrefs

Sequences of the form (m*i)^(n-2)*ChebyshevU(n-2, -i/m): A131577 (m=0), A000129 (m=1), A085449 (m=2), A002534 (m=3), A161007 (m=4), this sequence (m=5), A123005 (m=7), A123006 (m=11).

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1) +25*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    Rest@CoefficientList[Series[x^2/(1 -2*x -25*x^2), {x,0,40}], x]
    Join[{a=0,b=1},Table[c=2*b+25*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
  • Sage
    [(5*i)^(n-2)*chebyshev_U(n-2, -i/5) for n in [1..30]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = 2*a(n-1) + 25*a(n-2).
a(n+1) = ((1+sqrt(26))^n - (1-sqrt(26))^n)/(2*sqrt(26)). - Rolf Pleisch, Jul 06 2009
a(n) = (5*i)^(n-2)*ChebyshevU(n-2, -i/5). - G. C. Greubel, Jul 12 2021

Extensions

Definition replaced by generating function - the Assoc. Eds. of the OEIS, Mar 27 2010

A123005 Expansion of g.f. x^2/(1-2*x-49*x^2).

Original entry on oeis.org

0, 1, 2, 53, 204, 3005, 16006, 179257, 1142808, 11069209, 78136010, 698663261, 5225991012, 44686481813, 345446523214, 2880530655265, 22687940948016, 186521884004017, 1484752874460818, 12109078065118469, 96971046978817020
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 23 2006

Keywords

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.

Crossrefs

Sequences of the form (m*i)^(n-1)*ChebyshevU(n-1, -i/m): A131577 (m=0), A000129 (m=1), A085449 (m=2), A002534 (m=3), A161007 (m=4), A123004 (m=5), this sequence (m=7), A123006 (m=11).

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1) -49*Self(n-2): n in [1..31]]; // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    CoefficientList[Series[x^2/(1-2x-49x^2),{x,0,30}],x] (* Harvey P. Dale, Apr 12 2020 *)
  • Sage
    [(7*i)^(n-2)*chebyshev_U(n-2, -i/7) for n in [1..30]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = 2*a(n-1) + 49*a(n-2).
a(n) = (7*i)^(n-2)*ChebyshevU(n-2, -i/7). - G. C. Greubel, Jul 12 2021

Extensions

Definition replaced by generating function - the Assoc. Eds. of the OEIS, Mar 27 2010

A123006 Expansion of x^2/(1 -2*x -121*x^2).

Original entry on oeis.org

0, 1, 2, 125, 492, 16109, 91750, 2132689, 15367128, 288789625, 2437001738, 39817548101, 374512306500, 5566947933221, 56449884952942, 786500469825625, 8403437018957232, 111973430886815089, 1240762741067455250
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 23 2006

Keywords

Crossrefs

Sequences of the form (m*i)^(n-1)*ChebyshevU(n-1, -i/m): A131577 (m=0), A000129 (m=1), A085449 (m=2), A002534 (m=3), A161007 (m=4), A123004 (m=5), A123005 (m=7), this sequence (m=11).

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1) + 121*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    Rest@CoefficientList[Series[x^2/(1 -2*x -121*x^2), {x,0,30}], x]
  • Sage
    [(11*i)^(n-2)*chebyshev_U(n-2, -i/11) for n in [1..30]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = 2*a(n-1) + 121*a(n-2).
a(n) = (11*i)^(n-2)*ChebyshevU(n-2, -i/11). - G. C. Greubel, Jul 12 2021

A292847 a(n) is the smallest odd prime of the form ((1 + sqrt(2*n))^k - (1 - sqrt(2*n))^k)/(2*sqrt(2*n)).

Original entry on oeis.org

5, 7, 101, 11, 13, 269, 17, 19, 509, 23, 709, 821, 29, 31, 46957, 55399, 37, 168846239, 41, 43, 9177868096974864412935432937651459122761, 47, 485329129, 2789, 53, 3229, 3461, 59, 61, 1563353111, 139237612541, 67, 5021, 71, 73, 484639, 6221, 79, 6869, 83, 7549
Offset: 1

Views

Author

XU Pingya, Sep 24 2017

Keywords

Examples

			For k = {1, 2, 3, 4, 5}, ((1 + sqrt(6))^k - (1 - sqrt(6))^k)/(2*sqrt(6)) = {1, 2, 9, 28, 101}. 101 is odd prime, so a(3) = 101.
		

Crossrefs

Programs

  • Mathematica
    g[n_, k_] := ((1 + Sqrt[n])^k - (1 - Sqrt[n])^k)/(2Sqrt[n]);
    Table[k = 3; While[! PrimeQ[Expand@g[2n, k]], k++]; Expand@g[2n, k], {n, 41}]
  • PARI
    g(n,k) = ([0,1;2*n-1,2]^k*[0;1])[1,1]
    a(n) = for(k=3,oo,if(ispseudoprime(g(n,k)),return(g(n,k)))) \\ Jason Yuen, Apr 12 2025

Formula

When 2*n + 3 = p is prime, a(n) = p.
Showing 1-5 of 5 results.