cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123004 Expansion of g.f. x^2/(1 - 2*x - 25*x^2).

Original entry on oeis.org

0, 1, 2, 29, 108, 941, 4582, 32689, 179928, 1177081, 6852362, 43131749, 257572548, 1593438821, 9626191342, 59088353209, 358831489968, 2194871810161, 13360530869522, 81592856993069, 497198985724188, 3034219396275101
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 23 2006

Keywords

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.

Crossrefs

Sequences of the form (m*i)^(n-2)*ChebyshevU(n-2, -i/m): A131577 (m=0), A000129 (m=1), A085449 (m=2), A002534 (m=3), A161007 (m=4), this sequence (m=5), A123005 (m=7), A123006 (m=11).

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1) +25*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    Rest@CoefficientList[Series[x^2/(1 -2*x -25*x^2), {x,0,40}], x]
    Join[{a=0,b=1},Table[c=2*b+25*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
  • Sage
    [(5*i)^(n-2)*chebyshev_U(n-2, -i/5) for n in [1..30]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = 2*a(n-1) + 25*a(n-2).
a(n+1) = ((1+sqrt(26))^n - (1-sqrt(26))^n)/(2*sqrt(26)). - Rolf Pleisch, Jul 06 2009
a(n) = (5*i)^(n-2)*ChebyshevU(n-2, -i/5). - G. C. Greubel, Jul 12 2021

Extensions

Definition replaced by generating function - the Assoc. Eds. of the OEIS, Mar 27 2010

A123005 Expansion of g.f. x^2/(1-2*x-49*x^2).

Original entry on oeis.org

0, 1, 2, 53, 204, 3005, 16006, 179257, 1142808, 11069209, 78136010, 698663261, 5225991012, 44686481813, 345446523214, 2880530655265, 22687940948016, 186521884004017, 1484752874460818, 12109078065118469, 96971046978817020
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 23 2006

Keywords

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.

Crossrefs

Sequences of the form (m*i)^(n-1)*ChebyshevU(n-1, -i/m): A131577 (m=0), A000129 (m=1), A085449 (m=2), A002534 (m=3), A161007 (m=4), A123004 (m=5), this sequence (m=7), A123006 (m=11).

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1) -49*Self(n-2): n in [1..31]]; // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    CoefficientList[Series[x^2/(1-2x-49x^2),{x,0,30}],x] (* Harvey P. Dale, Apr 12 2020 *)
  • Sage
    [(7*i)^(n-2)*chebyshev_U(n-2, -i/7) for n in [1..30]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = 2*a(n-1) + 49*a(n-2).
a(n) = (7*i)^(n-2)*ChebyshevU(n-2, -i/7). - G. C. Greubel, Jul 12 2021

Extensions

Definition replaced by generating function - the Assoc. Eds. of the OEIS, Mar 27 2010
Showing 1-2 of 2 results.