cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A123004 Expansion of g.f. x^2/(1 - 2*x - 25*x^2).

Original entry on oeis.org

0, 1, 2, 29, 108, 941, 4582, 32689, 179928, 1177081, 6852362, 43131749, 257572548, 1593438821, 9626191342, 59088353209, 358831489968, 2194871810161, 13360530869522, 81592856993069, 497198985724188, 3034219396275101
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 23 2006

Keywords

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.

Crossrefs

Sequences of the form (m*i)^(n-2)*ChebyshevU(n-2, -i/m): A131577 (m=0), A000129 (m=1), A085449 (m=2), A002534 (m=3), A161007 (m=4), this sequence (m=5), A123005 (m=7), A123006 (m=11).

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1) +25*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    Rest@CoefficientList[Series[x^2/(1 -2*x -25*x^2), {x,0,40}], x]
    Join[{a=0,b=1},Table[c=2*b+25*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
  • Sage
    [(5*i)^(n-2)*chebyshev_U(n-2, -i/5) for n in [1..30]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = 2*a(n-1) + 25*a(n-2).
a(n+1) = ((1+sqrt(26))^n - (1-sqrt(26))^n)/(2*sqrt(26)). - Rolf Pleisch, Jul 06 2009
a(n) = (5*i)^(n-2)*ChebyshevU(n-2, -i/5). - G. C. Greubel, Jul 12 2021

Extensions

Definition replaced by generating function - the Assoc. Eds. of the OEIS, Mar 27 2010

A123006 Expansion of x^2/(1 -2*x -121*x^2).

Original entry on oeis.org

0, 1, 2, 125, 492, 16109, 91750, 2132689, 15367128, 288789625, 2437001738, 39817548101, 374512306500, 5566947933221, 56449884952942, 786500469825625, 8403437018957232, 111973430886815089, 1240762741067455250
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 23 2006

Keywords

Crossrefs

Sequences of the form (m*i)^(n-1)*ChebyshevU(n-1, -i/m): A131577 (m=0), A000129 (m=1), A085449 (m=2), A002534 (m=3), A161007 (m=4), A123004 (m=5), A123005 (m=7), this sequence (m=11).

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1) + 121*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 12 2021
    
  • Mathematica
    Rest@CoefficientList[Series[x^2/(1 -2*x -121*x^2), {x,0,30}], x]
  • Sage
    [(11*i)^(n-2)*chebyshev_U(n-2, -i/11) for n in [1..30]] # G. C. Greubel, Jul 12 2021

Formula

a(n) = 2*a(n-1) + 121*a(n-2).
a(n) = (11*i)^(n-2)*ChebyshevU(n-2, -i/11). - G. C. Greubel, Jul 12 2021

A123009 Expansion of x*(1 + 5*x)/(1 - 2*x - 49*x^2).

Original entry on oeis.org

1, 7, 63, 469, 4025, 31031, 259287, 2039093, 16783249, 133482055, 1089343311, 8719307317, 70816436873, 568878932279, 4607763271335, 37090594224341, 299961588744097, 2417362294480903, 19532842437422559, 157516437304409365
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 23 2006

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 7^(n-1) else 2*Self(n-1) + 25*Self(n-2): n in [1..31]]; // G. C. Greubel, Jul 13 2021
    
  • Mathematica
    M:= {{0, 7}, {7, 2}}; v[1]= {1, 1}; v[n_]:= v[n]= M.v[n-1];
    Table[v[n][[1]], {n, 30}]
  • Sage
    [(7*i)^(n-2)*(5*chebyshev_U(n-2, -i/7) + 7*i*chebyshev_U(n-1, -i/7)) for n in (1..30)] # G. C. Greubel, Jul 13 2021

Formula

From Colin Barker, Oct 19 2012: (Start)
a(n) = 2*a(n-1) + 49*a(n-2) for n>2.
G.f.: x*(1 +5*x)/(1 -2*x -49*x^2). (End)
a(n) = (7*i)^(n-2)*(5*ChebyshevU(n-2, -i/7) + 7*i*ChebyshevU(n-1, -i/7)). - G. C. Greubel, Jul 13 2021

Extensions

Sequence edited by Joerg Arndt and Colin Barker, Oct 19 2012
Showing 1-3 of 3 results.