A161199 Numerators in expansion of (1-x)^(-5/2).
1, 5, 35, 105, 1155, 3003, 15015, 36465, 692835, 1616615, 7436429, 16900975, 152108775, 339319575, 1502700975, 3305942145, 115707975075, 251835004575, 1091285019825, 2354878200675, 20251952525805, 43397041126725, 185423721177825, 395033145117975
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Magma
A161199:= func< n | Numerator( Binomial(n+3,3)*Catalan(n+2)/2^(2*n+1) ) >; [A161199(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
Mathematica
Numerator[CoefficientList[Series[(1-x)^(-5/2),{x,0,30}],x]] (* or *) Numerator[Table[(4n^2+8n+3)/3 Binomial[2n,n]/4^n,{n,0,30}]] (* Harvey P. Dale, Oct 15 2011 *)
-
SageMath
def A161199(n): return numerator((-1)^n*binomial(-5/2,n)) [A161199(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
Formula
a(n) = numerator(((3 + 8*n + 4*n^2)/3)*binomial(2*n,n)/(4^n)).
a(n) = denominator((3/2)*Integral_{x=0..1} x^n*sqrt(1-x) dx), where the integral is sqrt(Pi)*n!/Gamma(n+5/2) = n!/( (n+3/2)*(n+1/2)*(n-1/2)*...*(1/2)). - Groux Roland, Feb 23 2011