A001790
Numerators in expansion of 1/sqrt(1-x).
Original entry on oeis.org
1, 1, 3, 5, 35, 63, 231, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 300540195, 583401555, 2268783825, 4418157975, 34461632205, 67282234305, 263012370465, 514589420475, 8061900920775, 15801325804719
Offset: 0
1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ...
binomial(2*n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
- P. J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 372.
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 102.
- Robert G. Wilson v, Table of n, a(n) for n = 0..1666 (first 201 terms from T. D. Noe)
- Horst Alzer and Bent Fuglede, Normalized binomial mid-coefficients and power means, Journal of Number Theory, Volume 115, Issue 2, December 2005, Pages 284-294.
- C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304062, 1993 (see V_n with N=1).
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table [Annotated scanned copy].
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- S. Łukaszyk and W. Bieniawski, Assembly Theory of Binary Messages, Mathematics, 12(10) (2024), 1600.
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
- H. E. Salzer, Coefficients for expressing the first twenty-four powers in terms of the Legendre polynomials, Math. Comp., 3 (1948), 16-18.
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages).
- Eric Weisstein's World of Mathematics, Binomial Series.
- Eric Weisstein's World of Mathematics, Legendre Polynomial.
- Wikipedia, Lorentz Factor.
Cf.
A060818 (denominator of binomial(2*n,n)/2^n),
A061549 (denominators).
Cf.
A161198 (triangle of coefficients for (1-x)^((-1-2*n)/2)).
Cf.
A163590 (odd part of the swinging factorial).
First column and diagonal 1 of triangle
A100258.
-
A001790:= func< n | Numerator((n+1)*Catalan(n)/4^n) >;
[A001790(n): n in [0..40]]; // G. C. Greubel, Sep 23 2024
-
e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end;
# From Peter Luschny, Aug 01 2009: (Start)
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
sigma := n -> 2^(add(i,i=convert(iquo(n,2),base,2))):
a := n -> swing(2*n)/sigma(2*n); # (End)
A001790 := proc(n) binomial(2*n, n)/4^n ; numer(%) ; end proc : # R. J. Mathar, Jan 18 2013
-
Numerator[ CoefficientList[ Series[1/Sqrt[(1 - x)], {x, 0, 25}], x]]
Table[Denominator[Hypergeometric2F1[1/2, n, 1 + n, -1]], {n, 0, 34}] (* John M. Campbell, Jul 04 2011 *)
Numerator[Table[(-2)^n*Sqrt[Pi]/(Gamma[1/2 - n]*Gamma[1 + n]),{n,0,20}]] (* Ralf Steiner, Apr 07 2017 *)
Numerator[Table[Binomial[2n,n]/2^n, {n, 0, 25}]] (* Vaclav Kotesovec, Apr 07 2017 *)
Table[Numerator@LegendreP[2 n, 0]*(-1)^n, {n, 0, 25}] (* Andres Cicuttin, Jan 22 2018 *)
A = {1}; Do[A = Append[A, 2^IntegerExponent[n, 2]*(2*n - 1)*A[[n]]/n], {n, 1, 25}]; Print[A] (* John Lawrence, Jul 17 2020 *)
-
{a(n) = if( n<0, 0, polcoeff( pollegendre(n), n) * 2^valuation((n\2*2)!, 2))};
-
a(n)=binomial(2*n,n)>>hammingweight(n); \\ Gleb Koloskov, Sep 26 2021
-
# uses[A000120]
@CachedFunction
def swing(n):
if n == 0: return 1
return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n
A001790 = lambda n: swing(2*n)/2^A000120(2*n)
[A001790(n) for n in (0..25)] # Peter Luschny, Nov 19 2012
A001803
Numerators in expansion of (1 - x)^(-3/2).
Original entry on oeis.org
1, 3, 15, 35, 315, 693, 3003, 6435, 109395, 230945, 969969, 2028117, 16900975, 35102025, 145422675, 300540195, 9917826435, 20419054425, 83945001525, 172308161025, 1412926920405, 2893136075115, 11835556670925
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
- G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:9 at page 51.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Mats Erik Andersson, Das Flaviussche Sieb, Acta Arith., 85 (1998), 301-307.
- Alexander Barg, Stolarsky's invariance principle for finite metric spaces, arXiv:2005.12995 [math.CO], 2020.
- Yue-Wu Li and Feng Qi, A New Closed-Form Formula of the Gauss Hypergeometric Function at Specific Arguments, Axioms (2024) Vol. 13, Art. No. 317. See p. 11 of 24.
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Eric Weisstein's World of Mathematics, Heads-Minus-Tails Distribution, Random Walk--1-Dimensional, Circle Line Picking.
The denominator is given in
A046161.
Cf.
A002596 (numerators in expansion of (1-x)^(1/2)).
Cf.
A161198 (triangle related to the series expansions of (1-x)^((-1-2*n)/2)).
-
A001803(n) = sum(<<(A001790(k), A005187(n) - A005187(k)) for k in 0:n) # Peter Luschny, Oct 03 2019
-
A001803:= func< n | Numerator(Binomial(n+2,2)*Catalan(n+1)/4^n) >;
[A001803(n): n in [0..30]]; // G. C. Greubel, Apr 27 2025
-
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
sigma := n -> 2^(add(i,i= convert(iquo(n,2),base,2))):
a := n -> swing(2*n+1)/sigma(2*n+1); # Peter Luschny, Aug 01 2009
A001803 := proc(n) (2*n+1)*binomial(2*n,n)/4^n ; numer(%) ; end proc: # R. J. Mathar, Jul 06 2011
a := n -> denom(Pi*binomial(n, -1/2)): seq(a(n), n = 0..22); # Peter Luschny, Dec 06 2024
-
Numerator/@CoefficientList[Series[(1-x)^(-3/2),{x,0,25}],x] (* Harvey P. Dale, Feb 19 2011 *)
Table[Denominator[Beta[1, n + 1, 1/2]], {n, 0, 22}] (* Gerry Martens, Nov 13 2016 *)
-
a(n) = numerator((2*n+1)*binomial(2*n,n)/(4^n)); \\ Altug Alkan, Sep 06 2018
-
def A001803(n): return numerator((n+1)*binomial(2*n+2,n+1)/2^(2*n+1))
print([A001803(n) for n in range(31)]) # G. C. Greubel, Apr 27 2025
A161198
Triangle of polynomial coefficients related to the series expansions of (1-x)^((-1-2*n)/2).
Original entry on oeis.org
1, 1, 2, 3, 8, 4, 15, 46, 36, 8, 105, 352, 344, 128, 16, 945, 3378, 3800, 1840, 400, 32, 10395, 39048, 48556, 27840, 8080, 1152, 64, 135135, 528414, 709324, 459032, 160720, 31136, 3136, 128
Offset: 0
From _Gary W. Adamson_, Jul 19 2011: (Start)
The first few rows of matrix M are:
1, 2, 0, 0, 0, ...
1, 3, 2, 0, 0, ...
1, 4, 5, 2, 0, ...
1, 5, 9, 7, 2, ...
1, 6, 14, 16, 9, ... (End)
The first few G(p,n) polynomials are:
G(p,-3) = 15 - 46*p + 36*p^2 - 8*p^3
G(p,-2) = 3 - 8*p + 4*p^2
G(p,-1) = 1 - 2*p
The first few F(p,n) polynomials are:
F(p,0) = 1
F(p,1) = 1 + 2*p
F(p,2) = 3 + 8*p + 4*p^2
F(p,3) = 15 + 46*p + 36*p^2 + 8*p^3
The first few rows of the upper and lower hourglass triangles are:
[15, -46, 36, -8]
[3, -8, 4]
[1, -2]
[1]
[1, 2]
[3, 8, 4]
[15, 46, 36, 8]
A046161 gives the denominators of the series expansions of all (1-x)^((-1-2*n)/2).
A028338 is a scaled triangle version,
A039757 is a scaled signed triangle version and
A109692 is a transposed scaled triangle version.
A001147 is the first left hand column and equals the row sums.
A004041 is the second left hand column divided by 2,
A028339 is the third left hand column divided by 4,
A028340 is the fourth left hand column divided by 8,
A028341 is the fifth left hand column divided by 16.
-
nmax:=7; for n from 0 to nmax do a(n,n):=2^n: a(n,0):=doublefactorial(2*n-1) od: for n from 2 to nmax do for m from 1 to n-1 do a(n,m) := 2*a(n-1,m-1)+(2*n-1)*a(n-1,m) od: od: seq(seq(a(n,k), k=0..n), n=0..nmax);
nmax:=7: M := Matrix(1..nmax+1,1..nmax+1): A029635 := proc(n,k): binomial(n,k) + binomial(n-1,k-1) end: for i from 1 to nmax do for j from 1 to i+1 do M[i,j] := A029635(i,j-1) od: od: for n from 0 to nmax do B := M^n: for m from 0 to n do a(n,m):= B[1,m+1] od: od: seq(seq(a(n,m), m=0..n), n=0..nmax);
A161198 := proc(n,k) option remember; if k > n or k < 0 then 0 elif n = 0 and k = 0 then 1 else 2*A161198(n-1, k-1) + (2*n-1)*A161198(n-1, k) fi end:
seq(print(seq(A161198(n,k), k = 0..n)), n = 0..6); # Peter Luschny, May 09 2013
-
nmax = 7; a[n_, 0] := (2*n-1)!!; a[n_, n_] := 2^n; a[n_, m_] := a[n, m] = 2*a[n-1, m-1]+(2*n-1)*a[n-1, m]; Table[a[n, m], {n, 0, nmax}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
-
for(n=0,9, print(Vec(Ser( 2^n*prod( k=1,n, x+(2*k-1)/2 ),,n+1)))) \\ M. F. Hasler, Jul 23 2011
-
@CachedFunction
def A161198(n,k):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return 2*A161198(n-1,k-1)+(2*n-1)*A161198(n-1,k)
for n in (0..6): [A161198(n,k) for k in (0..n)] # Peter Luschny, May 09 2013
A161200
Numerators in expansion of (1-x)^(3/2).
Original entry on oeis.org
1, -3, 3, 1, 3, 3, 7, 9, 99, 143, 429, 663, 4199, 6783, 22287, 37145, 1002915, 1710855, 5892945, 10235115, 71645805, 126233085, 447553665, 797813055, 11435320455, 20583576819, 74417546961, 135054066707, 983965343151, 1798281489207, 6593698793759, 12123897782073
Offset: 0
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:5 at page 50.
Cf.
A161199 (numerators in expansion of (1-x)^(-5/2)).
Cf.
A161198 (triangle related to the series expansions of (1-x)^((-1-2*n)/2) for all values of n).
Cf.
A046161 (denominators of the series expansions of (1-x)^(3/2)).
-
Numerator[CoefficientList[Series[(1-x)^(3/2),{x,0,30}],x]] (* Harvey P. Dale, Aug 26 2016 *)
a[n_]:= Numerator[3/(3-8*n+4*n^2)*Binomial[2*n,n]/(4^n)]; Array[a,28,0] (* Stefano Spezia, Dec 29 2024 *)
A161202
Numerators in expansion of (1-x)^(5/2).
Original entry on oeis.org
1, -5, 15, -5, -5, -3, -5, -5, -45, -55, -143, -195, -1105, -1615, -4845, -7429, -185725, -294975, -950475, -1550775, -10235115, -17058525, -57378675, -97294275, -1329688425, -2287064091, -7916760315, -13781027215
Offset: 0
Cf.
A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
-
A161202:= func< n | -Numerator(15*(n+1)*Catalan(n)/(4^n*(2*n-1)*(2*n-3)*(2*n-5))) >;
[A161202(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
Numerator[CoefficientList[Series[(1-x)^(5/2),{x,0,30}],x]] (* Harvey P. Dale, Aug 22 2011 *)
Table[(-1)^n*Numerator[Binomial[5/2, n]], {n,0,30}] (* G. C. Greubel, Sep 24 2024 *)
-
def A161202(n): return (-1)^n*numerator(binomial(5/2,n))
[A161202(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
A161201
Numerators in expansion of (1-x)^(-7/2).
Original entry on oeis.org
1, 7, 63, 231, 3003, 9009, 51051, 138567, 2909907, 7436429, 37182145, 91265265, 882230895, 2103781365, 9917826435, 23141595015, 856239015555, 1964313035685, 8948537162565, 20251952525805, 182267572732245
Offset: 0
Cf.
A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
-
A161201:= func< n | Numerator((n+1)*(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n)/(15*4^n)) >;
[A161201(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
CoefficientList[Series[(1-x)^(-7/2),{x,0,20}],x]//Numerator (* Harvey P. Dale, Jan 14 2020 *)
Table[(-1)^n*Numerator[Binomial[-7/2, n]], {n, 0, 30}] (* G. C. Greubel, Sep 24 2024 *)
-
def A161201(n): return (-1)^n*numerator(binomial(-7/2,n))
[A161201(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
A269949
Triangle read by rows, T(n,k) = denominator(binomial(-1/2, n-k))*binomial(n-1/2, k-1/2), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 5, 15, 5, 1, 35, 35, 35, 7, 1, 63, 315, 105, 63, 9, 1, 231, 693, 1155, 231, 99, 11, 1, 429, 3003, 3003, 3003, 429, 143, 13, 1, 6435, 6435, 15015, 9009, 6435, 715, 195, 15, 1, 12155, 109395, 36465, 51051, 21879, 12155, 1105, 255, 17, 1
Offset: 0
Triangle starts:
[ 1]
[ 1, 1]
[ 3, 3, 1]
[ 5, 15, 5, 1]
[ 35, 35, 35, 7, 1]
[ 63, 315, 105, 63, 9, 1]
[231, 693, 1155, 231, 99, 11, 1]
-
Table[Denominator[Binomial[-1/2, n - k]] Binomial[n - 1/2, k - 1/2], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 13 2017 *)
-
A269949 = lambda n,k: binomial(-1/2,n-k).denom()*binomial(n-1/2,k-1/2)
for n in range(8): print([A269949(n,k) for k in (0..n)])
A269950
Triangle read by rows, T(n,k) = denominator(binomial(1/2,n-k))*binomial(n+1/2, k+1/2), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 3, 1, 15, 5, 1, 35, 35, 7, 1, 315, 105, 63, 9, 1, 693, 1155, 231, 99, 11, 1, 3003, 3003, 3003, 429, 143, 13, 1, 6435, 15015, 9009, 6435, 715, 195, 15, 1, 109395, 36465, 51051, 21879, 12155, 1105, 255, 17, 1, 230945, 692835, 138567, 138567, 46189, 20995, 1615, 323, 19, 1
Offset: 0
Triangle starts:
[1]
[3, 1]
[15, 5, 1]
[35, 35, 7, 1]
[315, 105, 63, 9, 1]
[693, 1155, 231, 99, 11, 1]
[3003, 3003, 3003, 429, 143, 13, 1]
[6435, 15015, 9009, 6435, 715, 195, 15, 1]
-
A269950 = lambda n,k: binomial(1/2,n-k).denom()*binomial(n+1/2,k+1/2)
for n in range(8): print([A269950(n,k) for k in (0..n)])
Showing 1-8 of 8 results.
Comments