cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001790 Numerators in expansion of 1/sqrt(1-x).

Original entry on oeis.org

1, 1, 3, 5, 35, 63, 231, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 300540195, 583401555, 2268783825, 4418157975, 34461632205, 67282234305, 263012370465, 514589420475, 8061900920775, 15801325804719
Offset: 0

Views

Author

Keywords

Comments

Also numerator of e(n-1,n-1) (see Maple line).
Leading coefficient of normalized Legendre polynomial.
Common denominator of expansions of powers of x in terms of Legendre polynomials P_n(x).
Also the numerator of binomial(2*n,n)/2^n. - T. D. Noe, Nov 29 2005
This sequence gives the numerators of the Maclaurin series of the Lorentz factor (see Wikipedia link) of 1/sqrt(1-b^2) = dt/dtau where b=u/c is the velocity in terms of the speed of light c, u is the velocity as observed in the reference frame where time t is measured and tau is the proper time. - Stephen Crowley, Apr 03 2007
Truncations of rational expressions like those given by the numerator operator are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n)$ / sigma(2*n) = A056040(2*n) / A060632(2*n+1). Simply said: this sequence is the odd part of the swinging factorial at even indices. - Peter Luschny, Aug 01 2009
It appears that a(n) = A060818(n)*A001147(n)/A000142(n). - James R. Buddenhagen, Jan 20 2010
The convolution of sequence binomial(2*n,n)/4^n with itself is the constant sequence with all terms = 1.
a(n) equals the denominator of Hypergeometric2F1[1/2, n, 1 + n, -1] (see Mathematica code below). - John M. Campbell, Jul 04 2011
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2-2*x+2)^n dx. - Leonid Bedratyuk, Nov 17 2012
a(n) = numerator of the mean value of cos(x)^(2*n) from x = 0 to 2*Pi. - Jean-François Alcover, Mar 21 2013
Constant terms for normalized Legendre polynomials. - Tom Copeland, Feb 04 2016
From Ralf Steiner, Apr 07 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums:
a(n)/A060818(n) = (-2)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A060818(k) = -i.
Sum_{k>=0} (-1)^k*a(k)/A060818(k) = 1/sqrt(3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A060818(k) = -1/sqrt(3).
a(n)/A046161(n) = (-1)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} (-1)^k*a(k)/A046161(k) = 1/sqrt(2).
Sum_{k>=0} (-1)^(k+1)*a(k)/A046161(k) = -1/sqrt(2). (End)
a(n) = numerator of (1/Pi)*Integral_{x=-oo..+oo} 1/(x^2+1)^n dx. (n=1 is the Cauchy distribution.) - Harry Garst, May 26 2017
Let R(n, d) = (Product_{j prime to d} Pochhammer(j / d, n)) / n!. Then the numerators of R(n, 2) give this sequence and the denominators are A046161. For d = 3 see A273194/A344402. - Peter Luschny, May 20 2021
Using WolframAlpha, it appears a(n) gives the numerator in the residues of f(z) = 2z choose z at odd negative half integers. E.g., the residues of f(z) at z = -1/2, -3/2, -5/2 are 1/(2*Pi), 1/(16*Pi), and 3/(256*Pi) respectively. - Nicholas Juricic, Mar 31 2022
a(n) is the numerator of (1/Pi) * Integral_{x=-oo..+oo} sech(x)^(2*n+1) dx. The corresponding denominator is A046161. - Mohammed Yaseen, Jul 29 2023
a(n) is the numerator of (1/Pi) * Integral_{x=0..Pi/2} sin(x)^(2*n) dx. The corresponding denominator is A101926(n). - Mohammed Yaseen, Sep 19 2023

Examples

			1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ...
binomial(2*n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
		

References

  • P. J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 372.
  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 102.

Crossrefs

Cf. A060818 (denominator of binomial(2*n,n)/2^n), A061549 (denominators).
Cf. A123854 (denominators).
Cf. A161198 (triangle of coefficients for (1-x)^((-1-2*n)/2)).
Cf. A163590 (odd part of the swinging factorial).
Cf. A001405.
First column and diagonal 1 of triangle A100258.
Bisection of A036069.
Bisections give A061548 and A063079.
Inverse Moebius transform of A180403/A046161.
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), this sequence (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7).

Programs

  • Magma
    A001790:= func< n | Numerator((n+1)*Catalan(n)/4^n) >;
    [A001790(n): n in [0..40]]; // G. C. Greubel, Sep 23 2024
  • Maple
    e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end;
    # From Peter Luschny, Aug 01 2009: (Start)
    swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    sigma := n -> 2^(add(i,i=convert(iquo(n,2),base,2))):
    a := n -> swing(2*n)/sigma(2*n); # (End)
    A001790 := proc(n) binomial(2*n, n)/4^n ; numer(%) ; end proc : # R. J. Mathar, Jan 18 2013
  • Mathematica
    Numerator[ CoefficientList[ Series[1/Sqrt[(1 - x)], {x, 0, 25}], x]]
    Table[Denominator[Hypergeometric2F1[1/2, n, 1 + n, -1]], {n, 0, 34}]   (* John M. Campbell, Jul 04 2011 *)
    Numerator[Table[(-2)^n*Sqrt[Pi]/(Gamma[1/2 - n]*Gamma[1 + n]),{n,0,20}]] (* Ralf Steiner, Apr 07 2017 *)
    Numerator[Table[Binomial[2n,n]/2^n, {n, 0, 25}]] (* Vaclav Kotesovec, Apr 07 2017 *)
    Table[Numerator@LegendreP[2 n, 0]*(-1)^n, {n, 0, 25}] (* Andres Cicuttin, Jan 22 2018 *)
    A = {1}; Do[A = Append[A, 2^IntegerExponent[n, 2]*(2*n - 1)*A[[n]]/n], {n, 1, 25}]; Print[A] (* John Lawrence, Jul 17 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( pollegendre(n), n) * 2^valuation((n\2*2)!, 2))};
    
  • PARI
    a(n)=binomial(2*n,n)>>hammingweight(n); \\ Gleb Koloskov, Sep 26 2021
    
  • Sage
    # uses[A000120]
    @CachedFunction
    def swing(n):
        if n == 0: return 1
        return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n
    A001790 = lambda n: swing(2*n)/2^A000120(2*n)
    [A001790(n) for n in (0..25)]  # Peter Luschny, Nov 19 2012
    

Formula

a(n) = numerator( binomial(2*n,n)/4^n ) (cf. A046161).
a(n) = A000984(n)/A001316(n) where A001316(n) is the highest power of 2 dividing C(2*n, n) = A000984(n). - Benoit Cloitre, Jan 27 2002
a(n) = denominator of (2^n/binomial(2*n,n)). - Artur Jasinski, Nov 26 2011
a(n) = numerator(L(n)), with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x).
L(n) = (2*n-1)!!/n! with the double factorials (2*n-1)!! = A001147(n), n >= 0.
Numerator in (1-2t)^(-1/2) = 1 + t + (3/2)t^2 + (5/2)t^3 + (35/8)t^4 + (63/8)t^5 + (231/16)t^6 + (429/16)t^7 + ... = 1 + t + 3*t^2/2! + 15*t^3/3! + 105*t^4/4! + 945*t^5/5! + ... = e.g.f. for double factorials A001147 (cf. A094638). - Tom Copeland, Dec 04 2013
From Ralf Steiner, Apr 08 2017: (Start)
a(n)/A061549(n) = (-1/4)^n*sqrt(Pi)/(Gamma(1/2 - n)*Gamma(1 + n)).
Sum_{k>=0} a(k)/A061549(k) = 2/sqrt(3).
Sum_{k>=0} (-1)^k*a(k)/A061549(k) = 2/sqrt(5).
Sum_{k>=0} (-1)^(k+1)*a(k)/A061549(k) = -2/sqrt(5).
a(n)/A123854(n) = (-1/2)^n*sqrt(Pi)/(gamma(1/2 - n)*gamma(1 + n)).
Sum_{k>=0} a(k)/A123854(k) = sqrt(2).
Sum_{k>=0} (-1)^k*a(k)/A123854(k) = sqrt(2/3).
Sum_{k>=0} (-1)^(k+1)*a(k)/A123854(k) = -sqrt(2/3). (End)
a(n) = 2^A007814(n)*(2*n-1)*a(n-1)/n. - John Lawrence, Jul 17 2020
Sum_{k>=0} A086117(k+3)/a(k+2) = Pi. - Antonio Graciá Llorente, Aug 31 2024
a(n) = A001803(n)/(2*n+1). - G. C. Greubel, Sep 23 2024

A161198 Triangle of polynomial coefficients related to the series expansions of (1-x)^((-1-2*n)/2).

Original entry on oeis.org

1, 1, 2, 3, 8, 4, 15, 46, 36, 8, 105, 352, 344, 128, 16, 945, 3378, 3800, 1840, 400, 32, 10395, 39048, 48556, 27840, 8080, 1152, 64, 135135, 528414, 709324, 459032, 160720, 31136, 3136, 128
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009, Jul 22 2011

Keywords

Comments

The series expansion of (1-x)^((-1-2*n)/2) = sum(b(p)*x^p, p=0..infinity) for n = 0, 1, 2, .. can be described with b(p) = (F(p,n)/ (2*n-1)!!)*(binomial(2*p,p)/4^(p)) with F(x,n) = 2^n * product( x+(2*k-1)/2, k=1..n). The roots of the F(x,n) polynomials can be found at p = (1-2*k)/2 with k from 1 to n for n = 0, 1, 2, .. . The coefficients of the F(x,n) polynomials lead to the triangle given above. The triangle row sums lead to A001147.
Quite surprisingly we discovered that sum(b(p)*x^p, p=0..infinity) = (1-x)^(-1-2*n)/2, for n = -1, -2, .. . We assume that if m = n+1 then the value returned for product(f(k), k = m..n) is 1 and if m> n+1 then 1/product(f(k), k=n+1..m-1) is the value returned. Furthermore (1-2*n)!! = (-1)^(n+1)/(2*n-3)!! for n = 1, 2, 3 .. . This leads to b(p) = ((-1-2*n)!!/ G(p,n))*(binomial(2*p,p) /4^(p)) for n = -1, -2, .. . For the G(p,n) polynomials we found that G(p,n) = F(-p,-n). The roots of the G(p,n) polynomials can be found at p=(2*k-1)/2 with k from 1 to (-n) for n = -1, -2, .. . The coefficients of the G(p,n) polynomials lead to a second triangle that stands with its head on top of the first one. It is remarkable that the row sums lead once again to A001147.
These two triangles together look like an hourglass so we propose to call the F(p,n) and the G(p,n) polynomials the hourglass polynomials.
Triangle T(n,k), read by rows, given by (1, 2, 3, 4, 5, 6, 7, 8, 9, ...) DELTA (2, 0, 2, 0, 2, 0, 2, 0, 2, ...) where DELTA is the operator defined in A084938. Philippe Deléham, May 14 2015.

Examples

			From _Gary W. Adamson_, Jul 19 2011: (Start)
The first few rows of matrix M are:
  1, 2,  0,  0, 0, ...
  1, 3,  2,  0, 0, ...
  1, 4,  5,  2, 0, ...
  1, 5,  9,  7, 2, ...
  1, 6, 14, 16, 9, ... (End)
The first few G(p,n) polynomials are:
  G(p,-3) = 15 - 46*p + 36*p^2 - 8*p^3
  G(p,-2) = 3 - 8*p + 4*p^2
  G(p,-1) = 1 - 2*p
The first few F(p,n) polynomials are:
  F(p,0) = 1
  F(p,1) = 1 + 2*p
  F(p,2) = 3 + 8*p + 4*p^2
  F(p,3) = 15 + 46*p + 36*p^2 + 8*p^3
The first few rows of the upper and lower hourglass triangles are:
  [15, -46, 36, -8]
  [3, -8, 4]
  [1, -2]
  [1]
  [1, 2]
  [3, 8, 4]
  [15, 46, 36, 8]
		

Crossrefs

Cf. A001790 [(1-x)^(-1/2)], A001803 [(1-x)^(-3/2)], A161199 [(1-x)^(-5/2)] and A161201 [(1-x)^(-7/2)].
Cf. A002596 [(1-x)^(1/2)], A161200 [(1-x)^(3/2)] and A161202 [(1-x)^(5/2)].
A046161 gives the denominators of the series expansions of all (1-x)^((-1-2*n)/2).
A028338 is a scaled triangle version, A039757 is a scaled signed triangle version and A109692 is a transposed scaled triangle version.
A001147 is the first left hand column and equals the row sums.
A004041 is the second left hand column divided by 2, A028339 is the third left hand column divided by 4, A028340 is the fourth left hand column divided by 8, A028341 is the fifth left hand column divided by 16.
A000012, A000290, A024196, A024197 and A024198 are the first (n-m=0), second (n-m=1), third (n-m=2), fourth (n-m=3) and fifth (n-m=4) right hand columns divided by 2^m.
A074599 * A025549 is not always equals the second left hand column.
Cf. A029635. [Gary W. Adamson, Jul 19 2011]

Programs

  • Maple
    nmax:=7; for n from 0 to nmax do a(n,n):=2^n: a(n,0):=doublefactorial(2*n-1) od: for n from 2 to nmax do for m from 1 to n-1 do a(n,m) := 2*a(n-1,m-1)+(2*n-1)*a(n-1,m) od: od: seq(seq(a(n,k), k=0..n), n=0..nmax);
    nmax:=7: M := Matrix(1..nmax+1,1..nmax+1): A029635 := proc(n,k): binomial(n,k) + binomial(n-1,k-1) end: for i from 1 to nmax do for j from 1 to i+1 do M[i,j] := A029635(i,j-1) od: od: for n from 0 to nmax do B := M^n: for m from 0 to n do a(n,m):= B[1,m+1] od: od: seq(seq(a(n,m), m=0..n), n=0..nmax);
    A161198 := proc(n,k) option remember; if k > n or k < 0 then 0 elif n = 0 and k = 0 then 1 else 2*A161198(n-1, k-1) + (2*n-1)*A161198(n-1, k) fi end:
    seq(print(seq(A161198(n,k), k = 0..n)), n = 0..6);  # Peter Luschny, May 09 2013
  • Mathematica
    nmax = 7; a[n_, 0] := (2*n-1)!!; a[n_, n_] := 2^n; a[n_, m_] := a[n, m] = 2*a[n-1, m-1]+(2*n-1)*a[n-1, m]; Table[a[n, m], {n, 0, nmax}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
  • PARI
    for(n=0,9, print(Vec(Ser( 2^n*prod( k=1,n, x+(2*k-1)/2 ),,n+1))))  \\ M. F. Hasler, Jul 23 2011
    
  • Sage
    @CachedFunction
    def A161198(n,k):
        if k > n or k < 0 : return 0
        if n == 0 and k == 0: return 1
        return 2*A161198(n-1,k-1)+(2*n-1)*A161198(n-1,k)
    for n in (0..6): [A161198(n,k) for k in (0..n)]  # Peter Luschny, May 09 2013

Formula

a(n,m) := coeff(2^(n)*product((x+(2*k-1)/2),k=1..n), x, m) for n = 0, 1, .. ; m = 0, 1, .. .
a(n, m) = 2*a(n-1,m-1)+(2*n-1)*a(n-1,m) with a(n, n) = 2^n and a(n, 0) = (2*n-1)!!.
a(n,m) = the (m+1)-th term in the top row of M^n, where M is an infinite square production matrix; M[i,j] = A029635(i,j-1) = binomial(i, j-1) + binomial(i-1, j-2) with A029635 the (1.2)-Pascal triangle, see the examples and second Maple program. [Gary W. Adamson, Jul 19 2011]
T(n,k) = 2^k * A028338(n,k). - Philippe Deléham, May 14 2015

A002596 Numerators in expansion of sqrt(1+x). Absolute values give numerators in expansion of sqrt(1-x).

Original entry on oeis.org

1, 1, -1, 1, -5, 7, -21, 33, -429, 715, -2431, 4199, -29393, 52003, -185725, 334305, -9694845, 17678835, -64822395, 119409675, -883631595, 1641030105, -6116566755, 11435320455, -171529806825, 322476036831, -1215486600363, 2295919134019
Offset: 0

Views

Author

Keywords

Comments

Also, absolute values are numerators of (2n-3)!!/n! or the odd part of the (n-1)-th Catalan number.
From Dimitri Papadopoulos, Oct 28 2016: (Start)
The sum of the coefficients of the expansion of sqrt(1+x) is sqrt(2) (easy). Observation: The sum of the squares of the coefficients is 4/Pi.
Observation/conjecture: If a term of this sequence is divisible by a prime p, then that term is in a block of exactly (p^k-3)/2 consecutive terms all of which are divisible by p. Furthermore, if a(n) is the term preceding such a block then a(p*n-(p-1)/2) also precedes a block of (p^(k+1)-3)/2 terms all divisible by p.
E.g., a(4)=-5 is divisible by 5 and is in a block of (5^1 - 3)/2 = 1 consecutive terms that are all divisible by 5. Then a(5*3 - (5-1)/2) = a(13) = 52003 precedes a block of exactly (5^2 - 3)/2 = 11 terms all divisible by 5.
(End)

Examples

			sqrt(1+x) = 1 + (1/2)*x - (1/8)*x^2 + (1/16)*x^3 - (5/128)*x^4 + (7/256)*x^5 - (21/1024)*x^6 + (33/2048)*x^7 + ...
Coefficients are 1, 1/2, -1/8, 1/16, -5/128, 7/256, -21/1024, 33/2048, -429/32768, 715/65536, -2431/262144, 4199/524288, -29393/4194304, 52003/8388608, ...
		

References

  • B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.281).
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 88.
  • Eli Maor, e: The Story of a Number. Princeton, New Jersey: Princeton University Press (1994): 72.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.

Crossrefs

Denominators are A046161.
Cf. A001795.
Equals A000265(A000108(n-1)), n>0.
Absolute values are essentially A098597.
From Johannes W. Meijer, Jun 08 2009: (Start)
Cf. A161200 [(1-x)^(3/2)] and A161202 [(1-x)^(5/2)], A001803 [(1-x)^(-3/2)].
Cf. A161198 = triangle related to the series expansions of (1-x)^((-1-2*n)/2) for all values of n. (End)

Programs

  • Magma
    [(-1)^n*Numerator((1/(1-2*n))*Binomial(2*n,n)/(4^n)): n in [0..30]]; // Vincenzo Librandi, Jan 14 2016
  • Maple
    seq(numer(subs(k=1/2,expand(binomial(k,n)))),n=0..50); # James R. Buddenhagen, Aug 16 2014
  • Mathematica
    1+InverseSeries[Series[2^p*y+y^2/2^q, {y, 0, 24}], x] (* p, q positive integers, then a(n)=numerator(y(n)). - Len Smiley, Apr 13 2000 *)
    Numerator[CoefficientList[Series[Sqrt[1+x],{x,0,30}],x]] (* Harvey P. Dale, Oct 22 2011 *)
    Table[Numerator[Product[(3 - 2 k)/(2 k) , {k, j}]], {j, 0, 30}] (* Dimitri Papadopoulos, Oct 22 2016 *)
  • PARI
    x = 'x + O('x^40); apply(x->numerator(x), Vec(sqrt(1+x))) \\ Michel Marcus, Jan 14 2016
    

Formula

a(n+2) = C(n+1)/2^k(n+1), n >= 0; where C(n) = A000108(n), k(n) = A048881(n).
From Johannes W. Meijer, Jun 08 2009: (Start)
a(n) = (-1)^n*numerator((1/(1-2*n))*binomial(2*n,n)/(4^n)).
(1+x)^(1/2) = Sum_{n>=0} (1/(1-2*n))*binomial(2*n,n)/(4^n)*(-x)^n.
(1-x)^(1/2) = Sum_{n>=0} (1/(1-2*n))*binomial(2*n,n)/(4^n)*(x)^n. (End)
a(n) = numerator(Product_{k=1..n} (3-2*k)/(2*k)). - Dimitri Papadopoulos, Oct 22 2016

Extensions

Minor correction to definition from Johannes W. Meijer, Jun 05 2009

A161199 Numerators in expansion of (1-x)^(-5/2).

Original entry on oeis.org

1, 5, 35, 105, 1155, 3003, 15015, 36465, 692835, 1616615, 7436429, 16900975, 152108775, 339319575, 1502700975, 3305942145, 115707975075, 251835004575, 1091285019825, 2354878200675, 20251952525805, 43397041126725, 185423721177825, 395033145117975
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009

Keywords

Crossrefs

Cf. A161198 (triangle for (1-x)^((-1-2*n)/2) for all values of n).
Cf. A046161 (denominators for (1-x)^(-5/2)).
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), this sequence (p=-5), A161201 (p=-7).

Programs

  • Magma
    A161199:= func< n | Numerator( Binomial(n+3,3)*Catalan(n+2)/2^(2*n+1) ) >;
    [A161199(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    Numerator[CoefficientList[Series[(1-x)^(-5/2),{x,0,30}],x]] (* or *) Numerator[Table[(4n^2+8n+3)/3 Binomial[2n,n]/4^n,{n,0,30}]] (* Harvey P. Dale, Oct 15 2011 *)
  • SageMath
    def A161199(n): return numerator((-1)^n*binomial(-5/2,n))
    [A161199(n) for n in range(31)] # G. C. Greubel, Sep 24 2024

Formula

a(n) = numerator(((3 + 8*n + 4*n^2)/3)*binomial(2*n,n)/(4^n)).
a(n) = denominator((3/2)*Integral_{x=0..1} x^n*sqrt(1-x) dx), where the integral is sqrt(Pi)*n!/Gamma(n+5/2) = n!/( (n+3/2)*(n+1/2)*(n-1/2)*...*(1/2)). - Groux Roland, Feb 23 2011

A161202 Numerators in expansion of (1-x)^(5/2).

Original entry on oeis.org

1, -5, 15, -5, -5, -3, -5, -5, -45, -55, -143, -195, -1105, -1615, -4845, -7429, -185725, -294975, -950475, -1550775, -10235115, -17058525, -57378675, -97294275, -1329688425, -2287064091, -7916760315, -13781027215
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009

Keywords

Crossrefs

Cf. A046161 (denominators).
Cf. A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
Numerators of [x^n]( (1-x)^(p/2) ): this sequence (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7).

Programs

  • Magma
    A161202:= func< n | -Numerator(15*(n+1)*Catalan(n)/(4^n*(2*n-1)*(2*n-3)*(2*n-5))) >;
    [A161202(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    Numerator[CoefficientList[Series[(1-x)^(5/2),{x,0,30}],x]] (* Harvey P. Dale, Aug 22 2011 *)
    Table[(-1)^n*Numerator[Binomial[5/2, n]], {n,0,30}] (* G. C. Greubel, Sep 24 2024 *)
  • SageMath
    def A161202(n): return (-1)^n*numerator(binomial(5/2,n))
    [A161202(n) for n in range(31)] # G. C. Greubel, Sep 24 2024

Formula

a(n) = numerator( (15/(15-46*n+36*n^2-8*n^3))*binomial(2*n,n)/(4^n) ).
a(n) = (-1)^n*numerator( binomial(5/2, n) ). - G. C. Greubel, Sep 24 2024

A161201 Numerators in expansion of (1-x)^(-7/2).

Original entry on oeis.org

1, 7, 63, 231, 3003, 9009, 51051, 138567, 2909907, 7436429, 37182145, 91265265, 882230895, 2103781365, 9917826435, 23141595015, 856239015555, 1964313035685, 8948537162565, 20251952525805, 182267572732245
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009

Keywords

Crossrefs

Cf. A046161 (denominators).
Cf. A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), A161199 (p=-5), this sequence (p=-7).

Programs

  • Magma
    A161201:= func< n | Numerator((n+1)*(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n)/(15*4^n)) >;
    [A161201(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    CoefficientList[Series[(1-x)^(-7/2),{x,0,20}],x]//Numerator (* Harvey P. Dale, Jan 14 2020 *)
    Table[(-1)^n*Numerator[Binomial[-7/2, n]], {n, 0, 30}] (* G. C. Greubel, Sep 24 2024 *)
  • SageMath
    def A161201(n): return (-1)^n*numerator(binomial(-7/2,n))
    [A161201(n) for n in range(31)] # G. C. Greubel, Sep 24 2024

Formula

a(n) = numerator(((15+46*n+36*n^2+8*n^3)/15)*binomial(2*n,n)/(4^n)).
a(n) = (-1)^n*numerator( binomial(-7/2, n) ). - G. C. Greubel, Sep 24 2024

A206771 0 followed by the numerators of the reduced (A001803(n) + A001790(n)) / (2*A046161(n)).

Original entry on oeis.org

0, 1, 1, 9, 5, 175, 189, 1617, 429, 57915, 60775, 508079, 264537, 8788507, 9100525, 75218625, 9694845, 5109183315, 5250613995, 43106892675, 22090789875, 723694276305, 740104577355, 6049284520695, 1543768261425, 201547523019375
Offset: 0

Views

Author

Paul Curtz, Jan 10 2013

Keywords

Comments

We write the fractions a(n)/b(n) and higher order differences as a matrix:
0, 1, 1, 9/8, 5/4,...
1, 0, 1/8, 1/8, 15/128,... = (A001790(n)/A046161(n) +Lorbeta(n)) /2
-1, 1/8, 0, -1/128, -1/128,... = (Lorbeta(n+1) +A161200(n+1)/A046161(n+1)) / 2
9/8, -1/8, -1/128, 0, 1/1024,...
-5/4, 15/128, 1/128, 1/1024, 0,...
Here, Lorbeta(0)=1 and Lorbeta(n) = -A098597(n-1)/A046161(n) for n>0 is the inverse of the Lorentz factor.
The first line with numerators a(n) and denominators b(n) is 0, 1, 1, 9/8, 5/4, 175/128, 189/128, 1617/1024, 429/256, 57915/32768, 60775/32768,... It is an autosequence: Its inverse binomial transform is the signed sequence.
a(n+1)/(2*n-1)= 1, 3, 1, 25, 21, 147, 33, 3861, 3575, 26741,... .
a(n+1)/A146535(n) = 9, 5, 35, 27, 539, 39, 4455,... .
A001790(n)/A046161(n) yields the coefficients of the Lorentz factor (or Lorentz gamma factor). With b for beta and g for gamma:
g = (1-b^2)^-1 = 1 + (b^2)/2 + 3*(b^4)/8 + 5*(b^6)/16 + ... .
b = (1-g^-2)^-1 = 1 - (g^-2)/2 - (g^-4)/8 - (g^-6)/16 - ... .
Are the denominators of the first subdiagonal 1, 1/8, -1/128, 1/1024,... A061549(n) ?
a(n+1)/(A000108(n)*b(n)) = 1, 1, 9/16, 1/4, 25/256, 9/256, 49/4096, 1/256, 81/65536, 25/65536, 121/1048576,... = A191871(n+1)/ A084623(n+1)^2 ?

Examples

			From the first formula: a(1)=1*1, a(2)=1*1, a(3)=3*3, a(4)=1*5, a(5)=5*35, a(6)=3*63.
		

Crossrefs

Programs

  • Magma
    /* By definition: */ m:=25; R:=PowerSeriesRing(Rationals(), m); p:=Coefficients(R!(1/(1-x)^(1/2))); q:=Coefficients(R!((1-x)^(-3/2))); A001790:=[Numerator(p[i]): i in [1..m]]; A001803:=[Numerator(q[i]): i in [1..m]]; A046161:=[Denominator(Binomial(2*n,n)/4^n): n in [0..m-1]]; [0] cat [Numerator((A001803[n]+A001790[n])/(2*A046161[n])): n in [1..m]]; // Bruno Berselli, Mar 11 2013
  • Maple
    A206771 := proc(n)
            A001790(n)+A001803(n) ;
            %/2/A046161(n) ;
            numer(%) ;
    end proc: # R. J. Mathar, Jan 18 2013
  • Mathematica
    max = 25; A001803 = CoefficientList[Series[(1 - x)^(-3/2), {x, 0, max}], x] // Numerator; A001790 = CoefficientList[Series[1/Sqrt[(1 - x)], {x, 0, max}], x] // Numerator; A046161 = Table[Binomial[2n, n]/4^n, {n, 0, max}] // Denominator; a[n_] := (A001803[[n]] + A001790[[n]])/(2*A046161[[n]]) // Numerator; a[0] = 0; Table[a[n], {n, 0, max}]
    (* or (from 1st formula) : *) Table[ n*Numerator[4^(1-n)*Binomial[2n-2, n-1]]/2^IntegerExponent[n, 2], {n, 0, max}]
    (* or (from 2nd formula) : *) Table[ Numerator[ CatalanNumber[n-1]/2^(2n-1)]*Numerator[n^2/2^n], {n, 0, max}] (* Jean-François Alcover, Jan 31 2013 *)

Formula

a(n) = A000265(n) * A001790(n-1).
a(n) = A098597(n-1) * A191871(n). See also A181318
a(n) = numerator of n*binomial(2n-2,n-1)/4^(n-1). - Nathaniel Johnston, Dec 16 2022

Extensions

a(11)-a(25) from Jean-François Alcover, Jan 13 2013

A187791 Repeat n+1 times 2^A005187(n).

Original entry on oeis.org

1, 2, 2, 8, 8, 8, 16, 16, 16, 16, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536
Offset: 0

Views

Author

Paul Curtz, Jan 06 2013

Keywords

Comments

a(n) is the denominators of the antidiagonals of the Lorentz factor, which can be written A001790(n)/A046161(n), and its differences.
1, 1/2, 3/8, 5/16, 35/128, 63/256,... the Lorentz gamma factor,
-1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, ... -A098597(n)/A046161(n+1),from the Lorentz (beta) factor,
3/8, 1/16, 3/128, 3/256, 7/1024, 9/2048,... A161200(n+2)/A046161(n+2),
-5/16, -5/128, -3/256, -5/1024, -5/2048, -45/32768,... A161202(n+3)/A046161(n+4),
35/128, 7/256, 7/1024, 5/2048, 35/32768, 35/65536, ...
-63/256, -21/1024, -9/2048, -45/32768, -35/65536, -63/262144, ... .
Like 1/n and A164555(n)/A027642(n), the Lorentz factor is an autosequence of the second kind. The first column is the signed sequence.
The main diagonal is (-1)^n *A001790(n)/A061549(n).
The Lorentz factor is the differences of (0, followed by A001803(n)) / (1, followed by A046161(n)).
PiSK(n-2)=(0, 0, followed by A001803(n)) / (1, 1, followed by A046161(n)) is also an autosequence of second kind.
Remember that an autosequence of the second kind is a sequence whose inverse binomial transform is the sequence signed, with its main diagonal being the double of its first upper diagonal. - Paul Curtz, Oct 13 2013

Examples

			1,
2,   2,
8,   8,  8,
16, 16, 16, 16.
		

Crossrefs

Cf. A003506.

Programs

  • Mathematica
    Flatten[Table[Denominator[Binomial[2n, n]/4^n], {n, 0, 19}, {n + 1}]] (* Alonso del Arte, Jan 07 2013 *)
    (* Checking with the antidiagonals *) diff = Table[ Differences[ CoefficientList[ Series[1/Sqrt[1 - x], {x, 0, 9}], x], n], {n, 0, 9}]; Table[ diff[[n-k+1,k]] // Denominator,{n,0,10},{k,1,n}] // Flatten (* Jean-François Alcover, Jan 07 2013 *)
    Flatten[Table[2^IntegerExponent[(2*n)!, 2], {n, 0, 19}, {n + 1}]]; (* Jean-François Alcover, Mar 27 2013, after A005187 *)

Formula

Repeat A046161(n) n+1 times. Triangle.

Extensions

New definition by M. F. Hasler

A364658 Numerators of coefficients in expansion of (1 + x)^(2/3).

Original entry on oeis.org

1, 2, -1, 4, -7, 14, -91, 208, -494, 10868, -27170, 69160, -535990, 1401820, -3704810, 29638480, -79653415, 215532770, -5280552865, 14452039420, -39743108405, 329300041070, -913059204785, 2540686482880, -21278249294120, 59579098023536, -167279775219928, 12713262916714528
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 01 2023

Keywords

Examples

			(1 + x)^(2/3) = 1 + 2*x/3 - x^2/9 + 4*x^3/81 - 7*x^4/243 + 14*x^5/729 - 91*x^6/6561 + ...
Coefficients are 1, 2/3, -1/9, 4/81, -7/243, 14/729, -91/6561, ...
		

Crossrefs

Denominators are A067623.

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[(1 + x)^(2/3), {x, 0, nmax}], x] // Numerator
    Table[Binomial[2/3, n], {n, 0, 27}] // Numerator
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(2/3))) \\ Michel Marcus, Aug 02 2023

A381059 Array read by ascending antidiagonals: A(n,k) = numerator(binomial(n-1/2,k)) with k >=0.

Original entry on oeis.org

1, 1, -1, 1, 1, 3, 1, 3, -1, -5, 1, 5, 3, 1, 35, 1, 7, 15, -1, -5, -63, 1, 9, 35, 5, 3, 7, 231, 1, 11, 63, 35, -5, -3, -21, -429, 1, 13, 99, 105, 35, 3, 7, 33, 6435, 1, 15, 143, 231, 315, -7, -5, -9, -429, -12155, 1, 17, 195, 429, 1155, 63, 7, 5, 99, 715, 46189
Offset: 0

Views

Author

Stefano Spezia, Feb 12 2025

Keywords

Comments

Numerators of the binomial coefficients for half-integers. The denominators are given by the absolute values of A173755.

Examples

			The array of the binomial coefficients for half-integers begins as:
  1, -1/2,  3/8,  -5/16,   35/128, -63/256, ...
  1,  1/2, -1/8,   1/16,   -5/128,   7/256, ...
  1,  3/2,  3/8,  -1/16,    3/128,  -3/256, ...
  1,  5/2, 15/8,   5/16,   -5/128,   3/256, ...
  1,  7/2, 35/8,  35/16,   35/128,  -7/256, ...
  1,  9/2, 63/8, 105/16,  315/128,  63/256, ...
  1, 11/2, 99/8, 231/16, 1155/128, 693/256, ...
  ...
		

Crossrefs

Columns k=0..1 give A000012, A060747.
Row n=1 gives A002596.
Main diagonal gives A001790.

Programs

  • Mathematica
    A[n_,k_]:=Numerator[Binomial[n-1/2,k]]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
    A[n_,k_]:=Numerator[(2n-1)!!/((2(n-k)-1)!!2^k k!)]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

A(n,k) = numerator((2*n - 1)!!/((2*(n - k) - 1)!!*2^k*k!)).
A(n,2) = A000466(n-1) for n > 0.
A(n,3) = A162540(n-3) for n > 3.
A(0,n) = (-1)^n*A001790(n).
abs(A(2,n)) = abs(A161200(n)).
abs(A(3,n)) = abs(A161202(n)).
Showing 1-10 of 10 results.