A001790
Numerators in expansion of 1/sqrt(1-x).
Original entry on oeis.org
1, 1, 3, 5, 35, 63, 231, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 9694845, 300540195, 583401555, 2268783825, 4418157975, 34461632205, 67282234305, 263012370465, 514589420475, 8061900920775, 15801325804719
Offset: 0
1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ...
binomial(2*n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
- P. J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 372.
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 102.
- Robert G. Wilson v, Table of n, a(n) for n = 0..1666 (first 201 terms from T. D. Noe)
- Horst Alzer and Bent Fuglede, Normalized binomial mid-coefficients and power means, Journal of Number Theory, Volume 115, Issue 2, December 2005, Pages 284-294.
- C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304062, 1993 (see V_n with N=1).
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table [Annotated scanned copy].
- W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- S. Łukaszyk and W. Bieniawski, Assembly Theory of Binary Messages, Mathematics, 12(10) (2024), 1600.
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
- H. E. Salzer, Coefficients for expressing the first twenty-four powers in terms of the Legendre polynomials, Math. Comp., 3 (1948), 16-18.
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages).
- Eric Weisstein's World of Mathematics, Binomial Series.
- Eric Weisstein's World of Mathematics, Legendre Polynomial.
- Wikipedia, Lorentz Factor.
Cf.
A060818 (denominator of binomial(2*n,n)/2^n),
A061549 (denominators).
Cf.
A161198 (triangle of coefficients for (1-x)^((-1-2*n)/2)).
Cf.
A163590 (odd part of the swinging factorial).
First column and diagonal 1 of triangle
A100258.
-
A001790:= func< n | Numerator((n+1)*Catalan(n)/4^n) >;
[A001790(n): n in [0..40]]; // G. C. Greubel, Sep 23 2024
-
e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end;
# From Peter Luschny, Aug 01 2009: (Start)
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
sigma := n -> 2^(add(i,i=convert(iquo(n,2),base,2))):
a := n -> swing(2*n)/sigma(2*n); # (End)
A001790 := proc(n) binomial(2*n, n)/4^n ; numer(%) ; end proc : # R. J. Mathar, Jan 18 2013
-
Numerator[ CoefficientList[ Series[1/Sqrt[(1 - x)], {x, 0, 25}], x]]
Table[Denominator[Hypergeometric2F1[1/2, n, 1 + n, -1]], {n, 0, 34}] (* John M. Campbell, Jul 04 2011 *)
Numerator[Table[(-2)^n*Sqrt[Pi]/(Gamma[1/2 - n]*Gamma[1 + n]),{n,0,20}]] (* Ralf Steiner, Apr 07 2017 *)
Numerator[Table[Binomial[2n,n]/2^n, {n, 0, 25}]] (* Vaclav Kotesovec, Apr 07 2017 *)
Table[Numerator@LegendreP[2 n, 0]*(-1)^n, {n, 0, 25}] (* Andres Cicuttin, Jan 22 2018 *)
A = {1}; Do[A = Append[A, 2^IntegerExponent[n, 2]*(2*n - 1)*A[[n]]/n], {n, 1, 25}]; Print[A] (* John Lawrence, Jul 17 2020 *)
-
{a(n) = if( n<0, 0, polcoeff( pollegendre(n), n) * 2^valuation((n\2*2)!, 2))};
-
a(n)=binomial(2*n,n)>>hammingweight(n); \\ Gleb Koloskov, Sep 26 2021
-
# uses[A000120]
@CachedFunction
def swing(n):
if n == 0: return 1
return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n
A001790 = lambda n: swing(2*n)/2^A000120(2*n)
[A001790(n) for n in (0..25)] # Peter Luschny, Nov 19 2012
A161198
Triangle of polynomial coefficients related to the series expansions of (1-x)^((-1-2*n)/2).
Original entry on oeis.org
1, 1, 2, 3, 8, 4, 15, 46, 36, 8, 105, 352, 344, 128, 16, 945, 3378, 3800, 1840, 400, 32, 10395, 39048, 48556, 27840, 8080, 1152, 64, 135135, 528414, 709324, 459032, 160720, 31136, 3136, 128
Offset: 0
From _Gary W. Adamson_, Jul 19 2011: (Start)
The first few rows of matrix M are:
1, 2, 0, 0, 0, ...
1, 3, 2, 0, 0, ...
1, 4, 5, 2, 0, ...
1, 5, 9, 7, 2, ...
1, 6, 14, 16, 9, ... (End)
The first few G(p,n) polynomials are:
G(p,-3) = 15 - 46*p + 36*p^2 - 8*p^3
G(p,-2) = 3 - 8*p + 4*p^2
G(p,-1) = 1 - 2*p
The first few F(p,n) polynomials are:
F(p,0) = 1
F(p,1) = 1 + 2*p
F(p,2) = 3 + 8*p + 4*p^2
F(p,3) = 15 + 46*p + 36*p^2 + 8*p^3
The first few rows of the upper and lower hourglass triangles are:
[15, -46, 36, -8]
[3, -8, 4]
[1, -2]
[1]
[1, 2]
[3, 8, 4]
[15, 46, 36, 8]
A046161 gives the denominators of the series expansions of all (1-x)^((-1-2*n)/2).
A028338 is a scaled triangle version,
A039757 is a scaled signed triangle version and
A109692 is a transposed scaled triangle version.
A001147 is the first left hand column and equals the row sums.
A004041 is the second left hand column divided by 2,
A028339 is the third left hand column divided by 4,
A028340 is the fourth left hand column divided by 8,
A028341 is the fifth left hand column divided by 16.
-
nmax:=7; for n from 0 to nmax do a(n,n):=2^n: a(n,0):=doublefactorial(2*n-1) od: for n from 2 to nmax do for m from 1 to n-1 do a(n,m) := 2*a(n-1,m-1)+(2*n-1)*a(n-1,m) od: od: seq(seq(a(n,k), k=0..n), n=0..nmax);
nmax:=7: M := Matrix(1..nmax+1,1..nmax+1): A029635 := proc(n,k): binomial(n,k) + binomial(n-1,k-1) end: for i from 1 to nmax do for j from 1 to i+1 do M[i,j] := A029635(i,j-1) od: od: for n from 0 to nmax do B := M^n: for m from 0 to n do a(n,m):= B[1,m+1] od: od: seq(seq(a(n,m), m=0..n), n=0..nmax);
A161198 := proc(n,k) option remember; if k > n or k < 0 then 0 elif n = 0 and k = 0 then 1 else 2*A161198(n-1, k-1) + (2*n-1)*A161198(n-1, k) fi end:
seq(print(seq(A161198(n,k), k = 0..n)), n = 0..6); # Peter Luschny, May 09 2013
-
nmax = 7; a[n_, 0] := (2*n-1)!!; a[n_, n_] := 2^n; a[n_, m_] := a[n, m] = 2*a[n-1, m-1]+(2*n-1)*a[n-1, m]; Table[a[n, m], {n, 0, nmax}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
-
for(n=0,9, print(Vec(Ser( 2^n*prod( k=1,n, x+(2*k-1)/2 ),,n+1)))) \\ M. F. Hasler, Jul 23 2011
-
@CachedFunction
def A161198(n,k):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return 2*A161198(n-1,k-1)+(2*n-1)*A161198(n-1,k)
for n in (0..6): [A161198(n,k) for k in (0..n)] # Peter Luschny, May 09 2013
A002596
Numerators in expansion of sqrt(1+x). Absolute values give numerators in expansion of sqrt(1-x).
Original entry on oeis.org
1, 1, -1, 1, -5, 7, -21, 33, -429, 715, -2431, 4199, -29393, 52003, -185725, 334305, -9694845, 17678835, -64822395, 119409675, -883631595, 1641030105, -6116566755, 11435320455, -171529806825, 322476036831, -1215486600363, 2295919134019
Offset: 0
sqrt(1+x) = 1 + (1/2)*x - (1/8)*x^2 + (1/16)*x^3 - (5/128)*x^4 + (7/256)*x^5 - (21/1024)*x^6 + (33/2048)*x^7 + ...
Coefficients are 1, 1/2, -1/8, 1/16, -5/128, 7/256, -21/1024, 33/2048, -429/32768, 715/65536, -2431/262144, 4199/524288, -29393/4194304, 52003/8388608, ...
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.281).
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 88.
- Eli Maor, e: The Story of a Number. Princeton, New Jersey: Princeton University Press (1994): 72.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equation 6:14:6 at page 51.
Absolute values are essentially
A098597.
Cf.
A161198 = triangle related to the series expansions of (1-x)^((-1-2*n)/2) for all values of n. (End)
-
[(-1)^n*Numerator((1/(1-2*n))*Binomial(2*n,n)/(4^n)): n in [0..30]]; // Vincenzo Librandi, Jan 14 2016
-
seq(numer(subs(k=1/2,expand(binomial(k,n)))),n=0..50); # James R. Buddenhagen, Aug 16 2014
-
1+InverseSeries[Series[2^p*y+y^2/2^q, {y, 0, 24}], x] (* p, q positive integers, then a(n)=numerator(y(n)). - Len Smiley, Apr 13 2000 *)
Numerator[CoefficientList[Series[Sqrt[1+x],{x,0,30}],x]] (* Harvey P. Dale, Oct 22 2011 *)
Table[Numerator[Product[(3 - 2 k)/(2 k) , {k, j}]], {j, 0, 30}] (* Dimitri Papadopoulos, Oct 22 2016 *)
-
x = 'x + O('x^40); apply(x->numerator(x), Vec(sqrt(1+x))) \\ Michel Marcus, Jan 14 2016
A161199
Numerators in expansion of (1-x)^(-5/2).
Original entry on oeis.org
1, 5, 35, 105, 1155, 3003, 15015, 36465, 692835, 1616615, 7436429, 16900975, 152108775, 339319575, 1502700975, 3305942145, 115707975075, 251835004575, 1091285019825, 2354878200675, 20251952525805, 43397041126725, 185423721177825, 395033145117975
Offset: 0
Cf.
A161198 (triangle for (1-x)^((-1-2*n)/2) for all values of n).
Cf.
A046161 (denominators for (1-x)^(-5/2)).
-
A161199:= func< n | Numerator( Binomial(n+3,3)*Catalan(n+2)/2^(2*n+1) ) >;
[A161199(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
Numerator[CoefficientList[Series[(1-x)^(-5/2),{x,0,30}],x]] (* or *) Numerator[Table[(4n^2+8n+3)/3 Binomial[2n,n]/4^n,{n,0,30}]] (* Harvey P. Dale, Oct 15 2011 *)
-
def A161199(n): return numerator((-1)^n*binomial(-5/2,n))
[A161199(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
A161202
Numerators in expansion of (1-x)^(5/2).
Original entry on oeis.org
1, -5, 15, -5, -5, -3, -5, -5, -45, -55, -143, -195, -1105, -1615, -4845, -7429, -185725, -294975, -950475, -1550775, -10235115, -17058525, -57378675, -97294275, -1329688425, -2287064091, -7916760315, -13781027215
Offset: 0
Cf.
A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
-
A161202:= func< n | -Numerator(15*(n+1)*Catalan(n)/(4^n*(2*n-1)*(2*n-3)*(2*n-5))) >;
[A161202(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
Numerator[CoefficientList[Series[(1-x)^(5/2),{x,0,30}],x]] (* Harvey P. Dale, Aug 22 2011 *)
Table[(-1)^n*Numerator[Binomial[5/2, n]], {n,0,30}] (* G. C. Greubel, Sep 24 2024 *)
-
def A161202(n): return (-1)^n*numerator(binomial(5/2,n))
[A161202(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
A161201
Numerators in expansion of (1-x)^(-7/2).
Original entry on oeis.org
1, 7, 63, 231, 3003, 9009, 51051, 138567, 2909907, 7436429, 37182145, 91265265, 882230895, 2103781365, 9917826435, 23141595015, 856239015555, 1964313035685, 8948537162565, 20251952525805, 182267572732245
Offset: 0
Cf.
A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
-
A161201:= func< n | Numerator((n+1)*(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n)/(15*4^n)) >;
[A161201(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
-
CoefficientList[Series[(1-x)^(-7/2),{x,0,20}],x]//Numerator (* Harvey P. Dale, Jan 14 2020 *)
Table[(-1)^n*Numerator[Binomial[-7/2, n]], {n, 0, 30}] (* G. C. Greubel, Sep 24 2024 *)
-
def A161201(n): return (-1)^n*numerator(binomial(-7/2,n))
[A161201(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
A206771
0 followed by the numerators of the reduced (A001803(n) + A001790(n)) / (2*A046161(n)).
Original entry on oeis.org
0, 1, 1, 9, 5, 175, 189, 1617, 429, 57915, 60775, 508079, 264537, 8788507, 9100525, 75218625, 9694845, 5109183315, 5250613995, 43106892675, 22090789875, 723694276305, 740104577355, 6049284520695, 1543768261425, 201547523019375
Offset: 0
From the first formula: a(1)=1*1, a(2)=1*1, a(3)=3*3, a(4)=1*5, a(5)=5*35, a(6)=3*63.
-
/* By definition: */ m:=25; R:=PowerSeriesRing(Rationals(), m); p:=Coefficients(R!(1/(1-x)^(1/2))); q:=Coefficients(R!((1-x)^(-3/2))); A001790:=[Numerator(p[i]): i in [1..m]]; A001803:=[Numerator(q[i]): i in [1..m]]; A046161:=[Denominator(Binomial(2*n,n)/4^n): n in [0..m-1]]; [0] cat [Numerator((A001803[n]+A001790[n])/(2*A046161[n])): n in [1..m]]; // Bruno Berselli, Mar 11 2013
-
A206771 := proc(n)
A001790(n)+A001803(n) ;
%/2/A046161(n) ;
numer(%) ;
end proc: # R. J. Mathar, Jan 18 2013
-
max = 25; A001803 = CoefficientList[Series[(1 - x)^(-3/2), {x, 0, max}], x] // Numerator; A001790 = CoefficientList[Series[1/Sqrt[(1 - x)], {x, 0, max}], x] // Numerator; A046161 = Table[Binomial[2n, n]/4^n, {n, 0, max}] // Denominator; a[n_] := (A001803[[n]] + A001790[[n]])/(2*A046161[[n]]) // Numerator; a[0] = 0; Table[a[n], {n, 0, max}]
(* or (from 1st formula) : *) Table[ n*Numerator[4^(1-n)*Binomial[2n-2, n-1]]/2^IntegerExponent[n, 2], {n, 0, max}]
(* or (from 2nd formula) : *) Table[ Numerator[ CatalanNumber[n-1]/2^(2n-1)]*Numerator[n^2/2^n], {n, 0, max}] (* Jean-François Alcover, Jan 31 2013 *)
Original entry on oeis.org
1, 2, 2, 8, 8, 8, 16, 16, 16, 16, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536
Offset: 0
1,
2, 2,
8, 8, 8,
16, 16, 16, 16.
-
Flatten[Table[Denominator[Binomial[2n, n]/4^n], {n, 0, 19}, {n + 1}]] (* Alonso del Arte, Jan 07 2013 *)
(* Checking with the antidiagonals *) diff = Table[ Differences[ CoefficientList[ Series[1/Sqrt[1 - x], {x, 0, 9}], x], n], {n, 0, 9}]; Table[ diff[[n-k+1,k]] // Denominator,{n,0,10},{k,1,n}] // Flatten (* Jean-François Alcover, Jan 07 2013 *)
Flatten[Table[2^IntegerExponent[(2*n)!, 2], {n, 0, 19}, {n + 1}]]; (* Jean-François Alcover, Mar 27 2013, after A005187 *)
A364658
Numerators of coefficients in expansion of (1 + x)^(2/3).
Original entry on oeis.org
1, 2, -1, 4, -7, 14, -91, 208, -494, 10868, -27170, 69160, -535990, 1401820, -3704810, 29638480, -79653415, 215532770, -5280552865, 14452039420, -39743108405, 329300041070, -913059204785, 2540686482880, -21278249294120, 59579098023536, -167279775219928, 12713262916714528
Offset: 0
(1 + x)^(2/3) = 1 + 2*x/3 - x^2/9 + 4*x^3/81 - 7*x^4/243 + 14*x^5/729 - 91*x^6/6561 + ...
Coefficients are 1, 2/3, -1/9, 4/81, -7/243, 14/729, -91/6561, ...
-
nmax = 27; CoefficientList[Series[(1 + x)^(2/3), {x, 0, nmax}], x] // Numerator
Table[Binomial[2/3, n], {n, 0, 27}] // Numerator
-
my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(2/3))) \\ Michel Marcus, Aug 02 2023
A381059
Array read by ascending antidiagonals: A(n,k) = numerator(binomial(n-1/2,k)) with k >=0.
Original entry on oeis.org
1, 1, -1, 1, 1, 3, 1, 3, -1, -5, 1, 5, 3, 1, 35, 1, 7, 15, -1, -5, -63, 1, 9, 35, 5, 3, 7, 231, 1, 11, 63, 35, -5, -3, -21, -429, 1, 13, 99, 105, 35, 3, 7, 33, 6435, 1, 15, 143, 231, 315, -7, -5, -9, -429, -12155, 1, 17, 195, 429, 1155, 63, 7, 5, 99, 715, 46189
Offset: 0
The array of the binomial coefficients for half-integers begins as:
1, -1/2, 3/8, -5/16, 35/128, -63/256, ...
1, 1/2, -1/8, 1/16, -5/128, 7/256, ...
1, 3/2, 3/8, -1/16, 3/128, -3/256, ...
1, 5/2, 15/8, 5/16, -5/128, 3/256, ...
1, 7/2, 35/8, 35/16, 35/128, -7/256, ...
1, 9/2, 63/8, 105/16, 315/128, 63/256, ...
1, 11/2, 99/8, 231/16, 1155/128, 693/256, ...
...
-
A[n_,k_]:=Numerator[Binomial[n-1/2,k]]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=Numerator[(2n-1)!!/((2(n-k)-1)!!2^k k!)]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
Showing 1-10 of 10 results.
Comments