A161549 a(n) = 2*n^2 + 14*n + 1.
1, 17, 37, 61, 89, 121, 157, 197, 241, 289, 341, 397, 457, 521, 589, 661, 737, 817, 901, 989, 1081, 1177, 1277, 1381, 1489, 1601, 1717, 1837, 1961, 2089, 2221, 2357, 2497, 2641, 2789, 2941, 3097, 3257, 3421, 3589, 3761, 3937, 4117, 4301, 4489, 4681, 4877, 5077
Offset: 0
Links
- Pierre Gayet, Table of n, a(n) for n = 0..9999
- Pierre Gayet, Note et Compte rendu (gif version).
- Pierre Gayet, Note et Compte Rendu (pdf version).
- Pierre Gayet, 98 séquences générées ... par la formule générale indiquée.
- Claude Monet, Nymphéas.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[ 2*n^2+14*n+1: n in [0..50] ];
-
Mathematica
lst={}; Do[a=2*n^2+14*n+1; AppendTo[lst, a], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 13 2009 *) CoefficientList[Series[(1 + 14 x - 11 x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Nov 08 2014 *) Table[2n^2+14n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,17,37},50] (* Harvey P. Dale, Jul 14 2018 *)
-
PARI
Vec((1+14*x-11*x^2)/(1-x)^3 + O(x^100)) \\ Colin Barker, Nov 08 2014
Formula
a(n) = a(n-1) + 4*n + 12 (with a(0)=1). - Vincenzo Librandi, Nov 30 2010
G.f.: (1 + 14*x - 11*x^2)/(1-x)^3. - Vincenzo Librandi, Nov 08 2014
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: (1 + 16*x + 2*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Jun 13 2009
Comments