cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A053698 a(n) = n^3 + n^2 + n + 1.

Original entry on oeis.org

1, 4, 15, 40, 85, 156, 259, 400, 585, 820, 1111, 1464, 1885, 2380, 2955, 3616, 4369, 5220, 6175, 7240, 8421, 9724, 11155, 12720, 14425, 16276, 18279, 20440, 22765, 25260, 27931, 30784, 33825, 37060, 40495, 44136, 47989, 52060, 56355, 60880
Offset: 0

Views

Author

Henry Bottomley, Mar 23 2000

Keywords

Comments

a(n) = 1111 in base n.
n^3 + n^2 + n + 1 = (n^2 + 1)*(n + 1), therefore a(n) is never prime. - Alonso del Arte, Apr 22 2014

Examples

			a(2) = 15 because 2^3 + 2^2 + 2 + 1 = 8 + 4 + 2 + 1 = 15.
a(3) = 40 because 3^3 + 3^2 + 3 + 1 = 27 + 9 + 3 + 1 = 40.
a(4) = 85 because 4^3 + 4^2 + 4 + 1 = 64 + 16 + 4 + 1 = 85.
From _Bruno Berselli_, Jan 02 2017: (Start)
The terms of the sequence are provided by the row sums of the following triangle (see the seventh formula in the previous section):
.   1;
.   3,   1;
.   9,   5,   1;
.  19,  13,   7,   1;
.  33,  25,  17,   9,   1;
.  51,  41,  31,  21,  11,   1;
.  73,  61,  49,  37,  25,  13,  1;
.  99,  85,  71,  57,  43,  29, 15,  1;
. 129, 113,  97,  81,  65,  49, 33, 17,  1;
. 163, 145, 127, 109,  91,  73, 55, 37, 19,  1;
. 201, 181, 161, 141, 121, 101, 81, 61, 41, 21, 1;
...
Columns from the first to the fifth, respectively: A058331, A001844, A056220 (after -1), A059993, A161532. Also, eighth column is A161549.
(End)
		

Crossrefs

Cf. A237627 (subset of semiprimes).
Cf. A056106 (first differences).

Programs

Formula

For n >= 2, a(n) = (n^4-1)/(n-1) = A024002(n)/A024000(n) = A002522(n)*(n+1) = A002061(n+1) + A000578(n).
G.f.: (1+5*x^2) / (1-x)^4. - Colin Barker, Jan 06 2012
a(n) = -A062158(-n). - Bruno Berselli, Jan 26 2016
a(n) = Sum_{i=0..n} 2*n*(n-i)+1. - Bruno Berselli, Jan 02 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, Jan 02 2017
a(n) = A104878(n+3,n) = A055129(4,n) for n > 0. - Mathew Englander, Jan 06 2021
E.g.f.: exp(x)*(x^3+4*x^2+3*x+1). - Nikolaos Pantelidis, Feb 06 2023

A161935 28-gonal numbers: a(n) = n*(13*n - 12).

Original entry on oeis.org

0, 1, 28, 81, 160, 265, 396, 553, 736, 945, 1180, 1441, 1728, 2041, 2380, 2745, 3136, 3553, 3996, 4465, 4960, 5481, 6028, 6601, 7200, 7825, 8476, 9153, 9856, 10585, 11340, 12121, 12928, 13761, 14620, 15505, 16416, 17353, 18316, 19305, 20320, 21361, 22428, 23521
Offset: 0

Views

Author

Pierre Gayet, Jun 22 2009

Keywords

Comments

The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]
These are also the star 14-gonal numbers: a(n) = A051866(n) + 14*A000217(n-1). Luciano Ancora, Apr 04 2015

Examples

			G.f. = x + 28*x^2 + 81*x^3 + 160*x^4 + 265*x^5 + 396*x^6 + 553*x^7 + ...
		

Crossrefs

Programs

  • Magma
    [ (n+1)*(13*n+1): n in[0..50] ];
    
  • Mathematica
    lst={}; Do[a=13*n^2+14*n+1; AppendTo[lst, a], {n, 0, 5!}]; lst
    Table[n*(13*n - 12), {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
  • PARI
    {a(n) = n*(13*n - 12)}; /* Michael Somos, Dec 07 2016 */

Formula

a(n+1) = a(n) + 26*n + 1. - Vincenzo Librandi, Nov 30 2010
a(n) = A000217(n) + 25*A000217(n-1). - Luciano Ancora, Apr 04 2015
Product_{n>=2} (1 - 1/a(n)) = 13/14. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 13*x^2). - Nikolaos Pantelidis, Feb 05 2023
From Elmo R. Oliveira, Dec 14 2024: (Start)
G.f.: x*(1 + 25*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Edited by N. J. A. Sloane, Dec 07 2016 at the suggestion of Daniel Sterman.
Definition simplified by Omar E. Pol, Aug 10 2018

A161532 a(n) = 2*n^2 + 8*n + 1.

Original entry on oeis.org

1, 11, 25, 43, 65, 91, 121, 155, 193, 235, 281, 331, 385, 443, 505, 571, 641, 715, 793, 875, 961, 1051, 1145, 1243, 1345, 1451, 1561, 1675, 1793, 1915, 2041, 2171, 2305, 2443, 2585, 2731, 2881, 3035, 3193, 3355, 3521, 3691, 3865, 4043, 4225, 4411, 4601, 4795, 4993
Offset: 0

Views

Author

Pierre Gayet, Jun 13 2009

Keywords

Comments

The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]
Numbers of the form 2*n^2 - 7. - Boris Putievskiy, Feb 04 2013

Crossrefs

Programs

Formula

a(n) = a(n-1) + 4*n + 6 (with a(0)=1). - Vincenzo Librandi, Nov 30 2010
G.f.: (1 + 8*x - 5*x^2)/(1 - x)^3. - Vincenzo Librandi, Feb 07 2013
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: (1 + 10*x + 2*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jun 13 2009

A161587 a(n) = 13*n^2 + 10*n + 1.

Original entry on oeis.org

1, 24, 73, 148, 249, 376, 529, 708, 913, 1144, 1401, 1684, 1993, 2328, 2689, 3076, 3489, 3928, 4393, 4884, 5401, 5944, 6513, 7108, 7729, 8376, 9049, 9748, 10473, 11224, 12001, 12804, 13633, 14488, 15369, 16276, 17209, 18168, 19153, 20164
Offset: 0

Views

Author

Pierre Gayet, Jun 14 2009

Keywords

Comments

The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]

Crossrefs

Programs

  • Magma
    [ 13*n^2+10*n+1: n in [0..50] ];
    
  • Mathematica
    Table[13n^2+10n+1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{1,24,73},40] (* Harvey P. Dale, Nov 06 2014 *)
  • PARI
    a(n)=13*n^2+10*n+1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = a(n-1) + 26*n - 3 (with a(0)=1). - Vincenzo Librandi, Nov 30 2010
From Bruno Berselli, Dec 12 2011: (Start)
G.f.: (1 + 21*x + 4*x^2)/(1-x)^3.
a(n-1) = A202141(n) - 1 with a(-1)=4. (End)
E.g.f.: exp(x)*(1 + 23*x + 13*x^2). - Stefano Spezia, Oct 21 2024

A161617 a(n) = 8*n^2 + 20*n + 1.

Original entry on oeis.org

1, 29, 73, 133, 209, 301, 409, 533, 673, 829, 1001, 1189, 1393, 1613, 1849, 2101, 2369, 2653, 2953, 3269, 3601, 3949, 4313, 4693, 5089, 5501, 5929, 6373, 6833, 7309, 7801, 8309, 8833, 9373, 9929, 10501, 11089, 11693, 12313, 12949, 13601, 14269, 14953, 15653, 16369
Offset: 0

Views

Author

Pierre Gayet, Jun 14 2009

Keywords

Comments

The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - (Translation of a comment in French sent by P. Gayet)

Crossrefs

Programs

Formula

a(n) = a(n-1) + 16*n + 12 (with a(0)=1). - Vincenzo Librandi, Nov 30 2010
From Elmo R. Oliveira, Oct 22 2024: (Start)
G.f.: (1 + 26*x - 11*x^2)/(1 - x)^3.
E.g.f.: (1 + 28*x + 8*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A162316 a(n) = 5*n^2 + 20*n + 1.

Original entry on oeis.org

1, 26, 61, 106, 161, 226, 301, 386, 481, 586, 701, 826, 961, 1106, 1261, 1426, 1601, 1786, 1981, 2186, 2401, 2626, 2861, 3106, 3361, 3626, 3901, 4186, 4481, 4786, 5101, 5426, 5761, 6106, 6461, 6826, 7201, 7586, 7981, 8386, 8801, 9226, 9661, 10106, 10561, 11026
Offset: 0

Views

Author

Pierre Gayet, Jul 01 2009

Keywords

Comments

The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]

Crossrefs

Programs

  • Magma
    [ 5*n^2+20*n+1: n in [0..50] ];
    
  • Mathematica
    lst={}; Do[a=5*n^2+20*n+1; AppendTo[lst, a], {n, 0, 5!}]; lst
    Table[5n^2+20n+1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{1,26,61},40] (* or *) CoefficientList[Series[(14x^2-23x-1)/(x-1)^3,{x,0,40}],x] (* Harvey P. Dale, May 07 2023 *)
  • PARI
    a(n)=5*n^2+20*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = a(n-1) + 10*n + 15 (with a(0)=1). - Vincenzo Librandi, Dec 02 2010
G.f.: (14*x^2 - 23*x - 1)/(x - 1)^3. - Harvey P. Dale, May 07 2023
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: (5*x^2 + 25*x + 1)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Showing 1-6 of 6 results.