cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A139600 Square array T(n,k) = n*(k-1)*k/2+k, of nonnegative numbers together with polygonal numbers, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 6, 4, 0, 1, 5, 9, 10, 5, 0, 1, 6, 12, 16, 15, 6, 0, 1, 7, 15, 22, 25, 21, 7, 0, 1, 8, 18, 28, 35, 36, 28, 8, 0, 1, 9, 21, 34, 45, 51, 49, 36, 9, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 10, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 11
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

A general formula for polygonal numbers is P(n,k) = (n-2)*(k-1)*k/2 + k, where P(n,k) is the k-th n-gonal number.
The triangle sums, see A180662 for their definitions, link this square array read by antidiagonals with twelve different sequences, see the crossrefs. Most triangle sums are linear sums of shifted combinations of a sequence, see e.g. A189374. - Johannes W. Meijer, Apr 29 2011

Examples

			The square array of nonnegatives together with polygonal numbers begins:
=========================================================
....................... A   A   .   .   A    A    A    A
....................... 0   0   .   .   0    0    1    1
....................... 0   0   .   .   1    1    3    3
....................... 0   0   .   .   6    7    9    9
....................... 0   0   .   .   9    3    6    6
....................... 0   1   .   .   5    2    0    0
....................... 4   2   .   .   7    9    6    7
=========================================================
Nonnegatives . A001477: 0,  1,  2,  3,  4,   5,   6,   7, ...
Triangulars .. A000217: 0,  1,  3,  6, 10,  15,  21,  28, ...
Squares ...... A000290: 0,  1,  4,  9, 16,  25,  36,  49, ...
Pentagonals .. A000326: 0,  1,  5, 12, 22,  35,  51,  70, ...
Hexagonals ... A000384: 0,  1,  6, 15, 28,  45,  66,  91, ...
Heptagonals .. A000566: 0,  1,  7, 18, 34,  55,  81, 112, ...
Octagonals ... A000567: 0,  1,  8, 21, 40,  65,  96, 133, ...
9-gonals ..... A001106: 0,  1,  9, 24, 46,  75, 111, 154, ...
10-gonals .... A001107: 0,  1, 10, 27, 52,  85, 126, 175, ...
11-gonals .... A051682: 0,  1, 11, 30, 58,  95, 141, 196, ...
12-gonals .... A051624: 0,  1, 12, 33, 64, 105, 156, 217, ...
...
=========================================================
The column with the numbers 2, 3, 4, 5, 6, ... is formed by the numbers > 1 of A000027. The column with the numbers 3, 6, 9, 12, 15, ... is formed by the positive members of A008585.
		

Crossrefs

A formal extension negative n is in A326728.
Triangle sums (see the comments): A055795 (Row1), A080956 (Row2; terms doubled), A096338 (Kn11, Kn12, Kn13, Fi1, Ze1), A002624 (Kn21, Kn22, Kn23, Fi2, Ze2), A000332 (Kn3, Ca3, Gi3), A134393 (Kn4), A189374 (Ca1, Ze3), A011779 (Ca2, Ze4), A101357 (Ca4), A189375 (Gi1), A189376 (Gi2), A006484 (Gi4). - Johannes W. Meijer, Apr 29 2011
Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).

Programs

  • Magma
    T:= func< n,k | k*(n*(k-1)+2)/2 >;
    A139600:= func< n,k | T(n-k, k) >;
    [A139600(n,k): k in  [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
    
  • Maple
    T:= (n, k)-> n*(k-1)*k/2+k:
    seq(seq(T(d-k, k), k=0..d), d=0..14);  # Alois P. Heinz, Oct 14 2018
  • Mathematica
    T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[T[n - k - 1, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
  • Python
    def A139600Row(n):
        x, y = 1, 1
        yield 0
        while True:
            yield x
            x, y = x + y + n, y + n
    for n in range(8):
        R = A139600Row(n)
        print([next(R) for  in range(11)]) # _Peter Luschny, Aug 04 2019
    
  • SageMath
    def T(n,k): return k*(n*(k-1)+2)/2
    def A139600(n,k): return T(n-k, k)
    flatten([[A139600(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024

Formula

T(n,k) = n*(k-1)*k/2+k.
T(n,k) = A057145(n+2,k). - R. J. Mathar, Jul 28 2016
From Stefano Spezia, Apr 12 2024: (Start)
G.f.: y*(1 - x - y + 2*x*y)/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2 + x*y)/2. (End)

Extensions

Edited by Omar E. Pol, Jan 05 2009

A303812 Generalized 28-gonal (or icosioctagonal) numbers: m*(13*m - 12) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 25, 28, 76, 81, 153, 160, 256, 265, 385, 396, 540, 553, 721, 736, 928, 945, 1161, 1180, 1420, 1441, 1705, 1728, 2016, 2041, 2353, 2380, 2716, 2745, 3105, 3136, 3520, 3553, 3961, 3996, 4428, 4465, 4921, 4960, 5440, 5481, 5985, 6028, 6556, 6601, 7153, 7200, 7776, 7825, 8425, 8476, 9100, 9153
Offset: 0

Views

Author

Omar E. Pol, Jun 12 2018

Keywords

Comments

Partial sums of A317324. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), this sequence (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    I:=[0,1,25,28,76]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jun 23 2018
  • Mathematica
    With[{nn = 54, s = 28}, {0}~Join~Riffle[Array[PolygonalNumber[s, #] &, Ceiling[nn/2]], Array[PolygonalNumber[s, -#] &, Ceiling[nn/2]]]] (* Michael De Vlieger, Jun 14 2018 *)
    CoefficientList[Series[x (1 + 24 x + x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 23 2018 *)

Formula

G.f.: x*(1 + 24*x + x^2) / ((1 + x)^2*(1 - x)^3). - Vincenzo Librandi, Jun 23 2018
From Amiram Eldar, Mar 01 2022: (Start)
a(n) = (26*n*(n + 1) + 11*(2*n + 1)*(-1)^n - 11)/8.
a(n) = n*(13*n + 24)/4, if n is even, or (n + 1)*(13*n - 11)/4 otherwise.
Sum_{n>=1} 1/a(n) = 13/144 + Pi*cot(Pi/13)/12. (End)

A139601 Square array of polygonal numbers read by ascending antidiagonals: T(n, k) = (n + 1)*(k - 1)*k/2 + k.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 5, 9, 10, 0, 1, 6, 12, 16, 15, 0, 1, 7, 15, 22, 25, 21, 0, 1, 8, 18, 28, 35, 36, 28, 0, 1, 9, 21, 34, 45, 51, 49, 36, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 0, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

A general formula for polygonal numbers is P(n,k) = (n-2)(k-1)k/2 + k, where P(n,k) is the k-th n-gonal number. - Omar E. Pol, Dec 21 2008

Examples

			The square array of polygonal numbers begins:
========================================================
Triangulars .. A000217: 0, 1,  3,  6, 10,  15,  21,  28,
Squares ...... A000290: 0, 1,  4,  9, 16,  25,  36,  49,
Pentagonals .. A000326: 0, 1,  5, 12, 22,  35,  51,  70,
Hexagonals ... A000384: 0, 1,  6, 15, 28,  45,  66,  91,
Heptagonals .. A000566: 0, 1,  7, 18, 34,  55,  81, 112,
Octagonals ... A000567: 0, 1,  8, 21, 40,  65,  96, 133,
9-gonals ..... A001106: 0, 1,  9, 24, 46,  75, 111, 154,
10-gonals .... A001107: 0, 1, 10, 27, 52,  85, 126, 175,
11-gonals .... A051682: 0, 1, 11, 30, 58,  95, 141, 196,
12-gonals .... A051624: 0, 1, 12, 33, 64, 105, 156, 217,
And so on ..............................................
========================================================
		

Crossrefs

Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).

Programs

  • Magma
    T:= func< n,k | k*((n+1)*(k-1) +2)/2 >;
    A139601:= func< n,k | T(n-k, k) >;
    [A139601(n,k): k in  [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[ T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
  • SageMath
    def T(n,k): return k*((n+1)*(k-1)+2)/2
    def A139601(n,k): return T(n-k, k)
    flatten([[A139601(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024

Formula

T(n,k) = A086270(n,k), k>0. - R. J. Mathar, Aug 06 2008
T(n,k) = (n+1)*(k-1)*k/2 +k, n>=0, k>=0. - Omar E. Pol, Jan 07 2009
From G. C. Greubel, Jul 12 2024: (Start)
t(n, k) = (k/2)*( (k-1)*(n-k+1) + 2), where t(n,k) is this array read by rising antidiagonals.
t(2*n, n) = A006003(n).
t(2*n+1, n) = A002411(n).
t(2*n-1, n) = A006000(n-1).
Sum_{k=0..n} t(n, k) = A006522(n+2).
Sum_{k=0..n} (-1)^k*t(n, k) = (-1)^n * A117142(n).
Sum_{k=0..n} t(n-k, k) = (2*n^4 + 34*n^2 + 48*n - 15 + 3*(-1)^n*(2*n^2 + 16*n + 5))/384. (End)

A161532 a(n) = 2*n^2 + 8*n + 1.

Original entry on oeis.org

1, 11, 25, 43, 65, 91, 121, 155, 193, 235, 281, 331, 385, 443, 505, 571, 641, 715, 793, 875, 961, 1051, 1145, 1243, 1345, 1451, 1561, 1675, 1793, 1915, 2041, 2171, 2305, 2443, 2585, 2731, 2881, 3035, 3193, 3355, 3521, 3691, 3865, 4043, 4225, 4411, 4601, 4795, 4993
Offset: 0

Views

Author

Pierre Gayet, Jun 13 2009

Keywords

Comments

The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]
Numbers of the form 2*n^2 - 7. - Boris Putievskiy, Feb 04 2013

Crossrefs

Programs

Formula

a(n) = a(n-1) + 4*n + 6 (with a(0)=1). - Vincenzo Librandi, Nov 30 2010
G.f.: (1 + 8*x - 5*x^2)/(1 - x)^3. - Vincenzo Librandi, Feb 07 2013
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: (1 + 10*x + 2*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jun 13 2009

A255184 25-gonal numbers: a(n) = n*(23*n-21)/2.

Original entry on oeis.org

0, 1, 25, 72, 142, 235, 351, 490, 652, 837, 1045, 1276, 1530, 1807, 2107, 2430, 2776, 3145, 3537, 3952, 4390, 4851, 5335, 5842, 6372, 6925, 7501, 8100, 8722, 9367, 10035, 10726, 11440, 12177, 12937, 13720, 14526, 15355, 16207, 17082, 17980
Offset: 0

Views

Author

Luciano Ancora, Apr 03 2015

Keywords

Comments

If b(n,k) = n*((k-2)*n-(k-4))/2 is n-th k-gonal number, then b(n,k) = A000217(n) + (k-3)* A000217(n-1) (see Deza in References section, page 21, where the formula is attributed to Bachet de Méziriac).
Also, b(n,k) = b(n,k-1) + A000217(n-1) (see Deza and Picutti in References section, page 20 and 137 respectively, where the formula is attributed to Nicomachus). Some examples:
for k=4, A000290(n) = A000217(n) + A000217(n-1);
for k=5, A000326(n) = A000290(n) + A000217(n-1);
for k=6, A000384(n) = A000326(n) + A000217(n-1), etc.
This is the case k=25.

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6 (23rd row of the table).
  • E. Picutti, Sul numero e la sua storia, Feltrinelli Economica (1977), pages 131-147.

Crossrefs

Cf. k-gonal numbers: A000217 (k=3), A000290 (k=4), A000326 (k=5), A000384 (k=6), A000566 (k=7), A000567 (k=8), A001106 (k=9), A001107 (k=10), A051682 (k=11), A051624 (k=12), A051865 (k=13), A051866 (k=14), A051867 (k=15), A051868 (k=16), A051869 (k=17), A051870 (k=18), A051871 (k=19), A051872 (k=20), A051873 (k=21), A051874 (k=22), A051875 (k=23), A051876 (k=24), this sequence (k=25), A255185 (k=26), A255186 (k=27), A161935 (k=28), A255187 (k=29), A254474 (k=30).

Programs

  • Magma
    k:=25; [n*((k-2)*n-(k-4))/2: n in [0..40]]; // Bruno Berselli, Apr 10 2015
    
  • Mathematica
    Table[n (23 n - 21)/2, {n, 40}]
  • PARI
    a(n)=n*(23*n-21)/2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(-1 - 22*x)/(-1 + x)^3.
a(n) = A000217(n) + 22*A000217(n-1) = A051876(n) + A000217(n-1), see comments.
Product_{n>=2} (1 - 1/a(n)) = 23/25. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 23*x^2/2). - Nikolaos Pantelidis, Feb 05 2023

A161549 a(n) = 2*n^2 + 14*n + 1.

Original entry on oeis.org

1, 17, 37, 61, 89, 121, 157, 197, 241, 289, 341, 397, 457, 521, 589, 661, 737, 817, 901, 989, 1081, 1177, 1277, 1381, 1489, 1601, 1717, 1837, 1961, 2089, 2221, 2357, 2497, 2641, 2789, 2941, 3097, 3257, 3421, 3589, 3761, 3937, 4117, 4301, 4489, 4681, 4877, 5077
Offset: 0

Views

Author

Pierre Gayet, Jun 13 2009

Keywords

Comments

The defining formula can be regarded as an approximation and simplification of the expansion/propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition/concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]

Crossrefs

Programs

  • Magma
    [ 2*n^2+14*n+1: n in [0..50] ];
    
  • Mathematica
    lst={}; Do[a=2*n^2+14*n+1; AppendTo[lst, a], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 13 2009 *)
    CoefficientList[Series[(1 + 14 x - 11 x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Nov 08 2014 *)
    Table[2n^2+14n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,17,37},50] (* Harvey P. Dale, Jul 14 2018 *)
  • PARI
    Vec((1+14*x-11*x^2)/(1-x)^3 + O(x^100)) \\ Colin Barker, Nov 08 2014

Formula

a(n) = a(n-1) + 4*n + 12 (with a(0)=1). - Vincenzo Librandi, Nov 30 2010
G.f.: (1 + 14*x - 11*x^2)/(1-x)^3. - Vincenzo Librandi, Nov 08 2014
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: (1 + 16*x + 2*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jun 13 2009

A161587 a(n) = 13*n^2 + 10*n + 1.

Original entry on oeis.org

1, 24, 73, 148, 249, 376, 529, 708, 913, 1144, 1401, 1684, 1993, 2328, 2689, 3076, 3489, 3928, 4393, 4884, 5401, 5944, 6513, 7108, 7729, 8376, 9049, 9748, 10473, 11224, 12001, 12804, 13633, 14488, 15369, 16276, 17209, 18168, 19153, 20164
Offset: 0

Views

Author

Pierre Gayet, Jun 14 2009

Keywords

Comments

The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]

Crossrefs

Programs

  • Magma
    [ 13*n^2+10*n+1: n in [0..50] ];
    
  • Mathematica
    Table[13n^2+10n+1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{1,24,73},40] (* Harvey P. Dale, Nov 06 2014 *)
  • PARI
    a(n)=13*n^2+10*n+1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = a(n-1) + 26*n - 3 (with a(0)=1). - Vincenzo Librandi, Nov 30 2010
From Bruno Berselli, Dec 12 2011: (Start)
G.f.: (1 + 21*x + 4*x^2)/(1-x)^3.
a(n-1) = A202141(n) - 1 with a(-1)=4. (End)
E.g.f.: exp(x)*(1 + 23*x + 13*x^2). - Stefano Spezia, Oct 21 2024

A161617 a(n) = 8*n^2 + 20*n + 1.

Original entry on oeis.org

1, 29, 73, 133, 209, 301, 409, 533, 673, 829, 1001, 1189, 1393, 1613, 1849, 2101, 2369, 2653, 2953, 3269, 3601, 3949, 4313, 4693, 5089, 5501, 5929, 6373, 6833, 7309, 7801, 8309, 8833, 9373, 9929, 10501, 11089, 11693, 12313, 12949, 13601, 14269, 14953, 15653, 16369
Offset: 0

Views

Author

Pierre Gayet, Jun 14 2009

Keywords

Comments

The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - (Translation of a comment in French sent by P. Gayet)

Crossrefs

Programs

Formula

a(n) = a(n-1) + 16*n + 12 (with a(0)=1). - Vincenzo Librandi, Nov 30 2010
From Elmo R. Oliveira, Oct 22 2024: (Start)
G.f.: (1 + 26*x - 11*x^2)/(1 - x)^3.
E.g.f.: (1 + 28*x + 8*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A162316 a(n) = 5*n^2 + 20*n + 1.

Original entry on oeis.org

1, 26, 61, 106, 161, 226, 301, 386, 481, 586, 701, 826, 961, 1106, 1261, 1426, 1601, 1786, 1981, 2186, 2401, 2626, 2861, 3106, 3361, 3626, 3901, 4186, 4481, 4786, 5101, 5426, 5761, 6106, 6461, 6826, 7201, 7586, 7981, 8386, 8801, 9226, 9661, 10106, 10561, 11026
Offset: 0

Views

Author

Pierre Gayet, Jul 01 2009

Keywords

Comments

The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]

Crossrefs

Programs

  • Magma
    [ 5*n^2+20*n+1: n in [0..50] ];
    
  • Mathematica
    lst={}; Do[a=5*n^2+20*n+1; AppendTo[lst, a], {n, 0, 5!}]; lst
    Table[5n^2+20n+1,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{1,26,61},40] (* or *) CoefficientList[Series[(14x^2-23x-1)/(x-1)^3,{x,0,40}],x] (* Harvey P. Dale, May 07 2023 *)
  • PARI
    a(n)=5*n^2+20*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = a(n-1) + 10*n + 15 (with a(0)=1). - Vincenzo Librandi, Dec 02 2010
G.f.: (14*x^2 - 23*x - 1)/(x - 1)^3. - Harvey P. Dale, May 07 2023
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: (5*x^2 + 25*x + 1)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A317302 Square array T(n,k) = (n - 2)*(k - 1)*k/2 + k, with n >= 0, k >= 0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, -3, 0, 1, 2, 0, -8, 0, 1, 3, 3, -2, -15, 0, 1, 4, 6, 4, -5, -24, 0, 1, 5, 9, 10, 5, -9, -35, 0, 1, 6, 12, 16, 15, 6, -14, -48, 0, 1, 7, 15, 22, 25, 21, 7, -20, -63, 0, 1, 8, 18, 28, 35, 36, 28, 8, -27, -80, 0, 1, 9, 21, 34, 45, 51, 49, 36, 9, -35, -99, 0, 1, 10, 24, 40, 55, 66
Offset: 0

Views

Author

Omar E. Pol, Aug 09 2018

Keywords

Comments

Note that the formula gives several kinds of numbers, for example:
Row 0 gives 0 together with A258837.
Row 1 gives 0 together with A080956.
Row 2 gives A001477, the nonnegative numbers.
For n >= 3, row n gives the n-gonal numbers (see Crossrefs section).

Examples

			Array begins:
------------------------------------------------------------------------
n\k  Numbers       Seq. No.   0   1   2   3   4    5    6    7    8
------------------------------------------------------------------------
0    ............ (A258837):  0,  1,  0, -3, -8, -15, -24, -35, -48, ...
1    ............ (A080956):  0,  1,  1,  0, -2,  -5,  -9, -14, -20, ...
2    Nonnegatives  A001477:   0,  1,  2,  3,  4,   5,   6,   7,   8, ...
3    Triangulars   A000217:   0,  1,  3,  6, 10,  15,  21,  28,  36, ...
4    Squares       A000290:   0,  1,  4,  9, 16,  25,  36,  49,  64, ...
5    Pentagonals   A000326:   0,  1,  5, 12, 22,  35,  51,  70,  92, ...
6    Hexagonals    A000384:   0,  1,  6, 15, 28,  45,  66,  91, 120, ...
7    Heptagonals   A000566:   0,  1,  7, 18, 34,  55,  81, 112, 148, ...
8    Octagonals    A000567:   0,  1,  8, 21, 40,  65,  96, 133, 176, ...
9    9-gonals      A001106:   0,  1,  9, 24, 46,  75, 111, 154, 204, ...
10   10-gonals     A001107:   0,  1, 10, 27, 52,  85, 126, 175, 232, ...
11   11-gonals     A051682:   0,  1, 11, 30, 58,  95, 141, 196, 260, ...
12   12-gonals     A051624:   0,  1, 12, 33, 64, 105, 156, 217, 288, ...
13   13-gonals     A051865:   0,  1, 13, 36, 70, 115, 171, 238, 316, ...
14   14-gonals     A051866:   0,  1, 14, 39, 76, 125, 186, 259, 344, ...
15   15-gonals     A051867:   0,  1, 15, 42, 82, 135, 201, 280, 372, ...
...
		

Crossrefs

Column 0 gives A000004.
Column 1 gives A000012.
Column 2 gives A001477, which coincides with the row numbers.
Main diagonal gives A060354.
Row 0 gives 0 together with A258837.
Row 1 gives 0 together with A080956.
Row 2 gives A001477, the same as column 2.
For n >= 3, row n gives the n-gonal numbers: A000217 (n=3), A000290 (n=4), A000326 (n=5), A000384 (n=6), A000566 (n=7), A000567 (n=8), A001106 (n=9), A001107 (n=10), A051682 (n=11), A051624 (n=12), A051865 (n=13), A051866 (n=14), A051867 (n=15), A051868 (n=16), A051869 (n=17), A051870 (n=18), A051871 (n=19), A051872 (n=20), A051873 (n=21), A051874 (n=22), A051875 (n=23), A051876 (n=24), A255184 (n=25), A255185 (n=26), A255186 (n=27), A161935 (n=28), A255187 (n=29), A254474 (n=30).
Cf. A303301 (similar table but with generalized polygonal numbers).

Formula

T(n,k) = A139600(n-2,k) if n >= 2.
T(n,k) = A139601(n-3,k) if n >= 3.
Showing 1-10 of 13 results. Next