cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161704 a(n) = (3*n^5 - 35*n^4 + 145*n^3 - 235*n^2 + 152*n + 30)/30.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 59, 190, 513, 1186, 2435, 4566, 7977, 13170, 20763, 31502, 46273, 66114, 92227, 125990, 168969, 222930, 289851, 371934, 471617, 591586, 734787, 904438, 1104041, 1337394, 1608603, 1922094, 2282625, 2695298, 3165571, 3699270
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 6} = divisors of 18:
a(n) = A027750(A006218(17) + k + 1), 0 <= k < A000005(18).

Examples

			Differences of divisors of 18 to compute the coefficients of their interpolating polynomial, see formula:
  1     2     3     6     9    18
     1     1     3     3     9
        0     2     0     6
           2    -2     6
             -4     8
                12
		

Crossrefs

Programs

  • Magma
    [(3*n^5 - 35*n^4 + 145*n^3 - 235*n^2 + 152*n + 30)/30: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
    
  • Maple
    A161704:=n->(3*n^5 - 35*n^4 + 145*n^3 - 235*n^2 + 152*n + 30)/30: seq(A161704(n), n=0..50); # Wesley Ivan Hurt, Jul 16 2017
  • Mathematica
    CoefficientList[Series[(1 - 4*x + 6*x^2 - 2*x^3 - 7*x^4 + 18*x^5)/(x - 1)^6, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *)
  • PARI
    a(n)=n*(3*n^4-35*n^3+145*n^2-235*n+152)/30+1

Formula

a(n) = C(n,0) + C(n,1) + 2*C(n,3) - 4*C(n,4) + 12*C(n,5).
G.f.: ( 1-4*x+6*x^2-2*x^3-7*x^4+18*x^5 ) / (x-1)^6. - R. J. Mathar, Jul 12 2016