cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161708 a(n) = -n^3 + 7*n^2 - 5*n + 1.

Original entry on oeis.org

1, 2, 11, 22, 29, 26, 7, -34, -103, -206, -349, -538, -779, -1078, -1441, -1874, -2383, -2974, -3653, -4426, -5299, -6278, -7369, -8578, -9911, -11374, -12973, -14714, -16603, -18646, -20849, -23218, -25759, -28478, -31381, -34474, -37763, -41254
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 4} = divisors of 22:
a(n) = A027750(A006218(21) + k + 1), 0 <= k < A000005(22).

Examples

			Differences of divisors of 22 to compute the coefficients of their interpolating polynomial, see formula:
  1     2    11    22
     1     9    11
        8     2
          -6
		

Crossrefs

Programs

  • Magma
    [-n^3 + 7*n^2 - 5*n + 1: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
    
  • Mathematica
    Table[-n^3+7n^2-5n+1,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,2,11,22},40] (* Harvey P. Dale, Nov 12 2013 *)
  • PARI
    a(n)=-n^3+7*n^2-5*n+1 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = C(n,0) + C(n,1) + 8*C(n,2) - 6*C(n,3).
G.f.: -(-1+2*x-9*x^2+14*x^3)/(-1+x)^4. - R. J. Mathar, Jun 18 2009
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) with a(0)=1, a(1)=2, a(2)=11, a(3)=22. - Harvey P. Dale, Nov 12 2013
E.g.f.: (-x^3 + 4*x^2 + x + 1)*exp(x). - G. C. Greubel, Jul 16 2017