A161709 a(n) = 22*n + 1.
1, 23, 45, 67, 89, 111, 133, 155, 177, 199, 221, 243, 265, 287, 309, 331, 353, 375, 397, 419, 441, 463, 485, 507, 529, 551, 573, 595, 617, 639, 661, 683, 705, 727, 749, 771, 793, 815, 837, 859, 881, 903, 925, 947, 969, 991, 1013, 1035, 1057, 1079, 1101, 1123
Offset: 0
References
- Italo Ghersi, Matematica dilettevole e curiosa, p. 139, Hoepli, Milano, 1967. [From Vincenzo Librandi, Dec 02 2009]
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..60], n-> 1+22*n ); # G. C. Greubel, Sep 18 2019
-
Magma
[1+22*n: n in [0..60]]; // G. C. Greubel, Sep 18 2019
-
Maple
seq(1+22*n, n=0..60); # G. C. Greubel, Sep 18 2019
-
Mathematica
22*Range[0,60]+1 (* Harvey P. Dale, Jan 09 2011 *)
-
PARI
vector(60, n, 22*n-21) \\ G. C. Greubel, Sep 18 2019
-
Sage
[1+22*n for n in (0..60)] # G. C. Greubel, Sep 18 2019
Formula
From G. C. Greubel, Sep 18 2019: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1 + 21*x)/(1-x)^2.
E.g.f.: (1 + 22*x)*exp(x). (End)