A161712 a(n) = (4*n^3 - 6*n^2 + 8*n + 3)/3.
1, 3, 9, 27, 65, 131, 233, 379, 577, 835, 1161, 1563, 2049, 2627, 3305, 4091, 4993, 6019, 7177, 8475, 9921, 11523, 13289, 15227, 17345, 19651, 22153, 24859, 27777, 30915, 34281, 37883, 41729, 45827, 50185, 54811, 59713, 64899, 70377, 76155
Offset: 0
Examples
Differences of divisors of 27 to compute the coefficients of their interpolating polynomial, see formula: 1 3 9 27 2 6 18 4 12 8
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Reinhard Zumkeller, Enumerations of Divisors
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(4*n^3 - 6*n^2 + 8*n + 3)/3: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
-
Mathematica
Table[(4n^3-6n^2+8n+3)/3,{n,0,80}] (* Harvey P. Dale, Apr 13 2011 *)
-
PARI
a(n)=(4*n^3-6*n^2+8*n)/3+1 \\ Charles R Greathouse IV, Jul 16 2011
Formula
a(n) = C(n,0) + 2*C(n,1) + 4*C(n,2) + 8*C(n,3).
G.f.: (x+1)*(1+x*(5*x-2))/(x-1)^4. - Harvey P. Dale, Apr 13 2011
E.g.f.: (1/3)*(4*x^3 + 6*x^2 + 6*x + 3)*exp(x). - G. C. Greubel, Jul 16 2017
a(n) -a(n-1) = A005899(n-1), n>=2. - R. J. Mathar, Aug 03 2025
Comments