cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161712 a(n) = (4*n^3 - 6*n^2 + 8*n + 3)/3.

Original entry on oeis.org

1, 3, 9, 27, 65, 131, 233, 379, 577, 835, 1161, 1563, 2049, 2627, 3305, 4091, 4993, 6019, 7177, 8475, 9921, 11523, 13289, 15227, 17345, 19651, 22153, 24859, 27777, 30915, 34281, 37883, 41729, 45827, 50185, 54811, 59713, 64899, 70377, 76155
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 4} = divisors of 27:
a(n) = A027750(A006218(26) + k + 1), 0 <= k < A000005(27).
a(n), n > 0 is the number of points of the half-integer lattice in R^n that lie in the open unit ball. - Tom Harris, Jun 15 2021

Examples

			Differences of divisors of 27 to compute the coefficients of their interpolating polynomial, see formula:
  1     3     9    27
     2     6    18
        4    12
           8
		

Programs

Formula

a(n) = C(n,0) + 2*C(n,1) + 4*C(n,2) + 8*C(n,3).
G.f.: (x+1)*(1+x*(5*x-2))/(x-1)^4. - Harvey P. Dale, Apr 13 2011
E.g.f.: (1/3)*(4*x^3 + 6*x^2 + 6*x + 3)*exp(x). - G. C. Greubel, Jul 16 2017
a(n) -a(n-1) = A005899(n-1), n>=2. - R. J. Mathar, Aug 03 2025