cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161734 a(n) = ((2+sqrt(2))*(5+sqrt(2))^n+(2-sqrt(2))*(5-sqrt(2))^n)/4.

Original entry on oeis.org

1, 6, 37, 232, 1469, 9354, 59753, 382388, 2449561, 15700686, 100666957, 645553792, 4140197909, 26554241874, 170317866833, 1092431105228, 7007000115121, 44944085730966, 288279854661877, 1849084574806552, 11860409090842349, 76075145687872794
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 17 2009

Keywords

Comments

Fifth binomial transform of A016116. Fourth binomial transform of the sequence of the absolute values of A077985. Third binomial transform of A007052. Second binomial transform of A086351. - R. J. Mathar, Jun 18 2009

Crossrefs

Programs

  • Magma
    [Floor(((2+Sqrt(2))*(5+Sqrt(2))^n+(2-Sqrt(2))*(5-Sqrt(2))^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
  • Mathematica
    CoefficientList[Series[(1-4*z)/(23*z^2-10*z+1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 12 2011 *)
    LinearRecurrence[{10,-23}, {1,6}, 50] (* G. C. Greubel, Apr 03 2018 *)
  • PARI
    F=nfinit(x^2-2); for(n=0, 20, print1(nfeltdiv(F, ((2+x)*(5+x)^n+(2-x)*(5-x)^n), 4)[1], ",")) \\ Klaus Brockhaus, Jun 19 2009
    

Formula

a(n) = 10*a(n-1) - 23*a(n-2). - R. J. Mathar, Jun 18 2009
G.f.: (1-4*x)/(1-10*x+23*x^2). - R. J. Mathar, Jun 18 2009
E.g.f.: exp(5*x)*(2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x))/2. - G. C. Greubel, Apr 03 2018

Extensions

Extended by R. J. Mathar and Klaus Brockhaus, Jun 18 2009
Edited by Klaus Brockhaus, Jul 05 2009