A161734 a(n) = ((2+sqrt(2))*(5+sqrt(2))^n+(2-sqrt(2))*(5-sqrt(2))^n)/4.
1, 6, 37, 232, 1469, 9354, 59753, 382388, 2449561, 15700686, 100666957, 645553792, 4140197909, 26554241874, 170317866833, 1092431105228, 7007000115121, 44944085730966, 288279854661877, 1849084574806552, 11860409090842349, 76075145687872794
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-23).
Programs
-
Magma
[Floor(((2+Sqrt(2))*(5+Sqrt(2))^n+(2-Sqrt(2))*(5-Sqrt(2))^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
-
Mathematica
CoefficientList[Series[(1-4*z)/(23*z^2-10*z+1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 12 2011 *) LinearRecurrence[{10,-23}, {1,6}, 50] (* G. C. Greubel, Apr 03 2018 *)
-
PARI
F=nfinit(x^2-2); for(n=0, 20, print1(nfeltdiv(F, ((2+x)*(5+x)^n+(2-x)*(5-x)^n), 4)[1], ",")) \\ Klaus Brockhaus, Jun 19 2009
Formula
a(n) = 10*a(n-1) - 23*a(n-2). - R. J. Mathar, Jun 18 2009
G.f.: (1-4*x)/(1-10*x+23*x^2). - R. J. Mathar, Jun 18 2009
E.g.f.: exp(5*x)*(2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x))/2. - G. C. Greubel, Apr 03 2018
Extensions
Extended by R. J. Mathar and Klaus Brockhaus, Jun 18 2009
Edited by Klaus Brockhaus, Jul 05 2009
Comments