A161870 Convolution square of A000219.
1, 2, 7, 18, 47, 110, 258, 568, 1237, 2600, 5380, 10870, 21652, 42350, 81778, 155676, 292964, 544846, 1003078, 1828128, 3301952, 5911740, 10499385, 18502582, 32371011, 56240816, 97073055, 166497412, 283870383, 481212656, 811287037, 1360575284, 2270274785, 3769835178, 6230705170, 10251665550, 16794445441
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vaclav Kotesovec)
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19.
- Paul Martin, Eric C. Rowell, and Fiona Torzewska, Classification of charge-conserving loop braid representations, arXiv:2301.13831 [math.QA], 2023.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, 2*add( a(n-j)*numtheory[sigma][2](j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Mar 12 2015
-
Mathematica
nn = 36; CoefficientList[Series[Product[1/(1 - x^i)^(2 i), {i, 1, nn}] , {x, 0, nn}], x] (* Geoffrey Critzer, Nov 29 2014 *)
-
PARI
N=66;x='x+O('x^N); Vec(1/prod(k=1,N,(1-x^k)^k)^2) \\ Joerg Arndt, Apr 22 2014
Formula
G.f.: 1 / prod(k>=1, (1-x^k)^k )^2. - Joerg Arndt, Apr 22 2014
a(n) ~ Zeta(3)^(2/9) * exp(1/6 + 3*n^(2/3)*(Zeta(3)/2)^(1/3)) / (A^2 * 2^(1/18) * sqrt(3*Pi) * n^(13/18)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Feb 27 2015
G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 29 2018
Extensions
Added more terms, Joerg Arndt, Apr 22 2014
Comments