cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A161886 Number of nonzero elements in the n X n Redheffer matrix.

Original entry on oeis.org

1, 4, 7, 11, 14, 19, 22, 27, 31, 36, 39, 46, 49, 54, 59, 65, 68, 75, 78, 85, 90, 95, 98, 107, 111, 116, 121, 128, 131, 140, 143, 150, 155, 160, 165, 175, 178, 183, 188, 197, 200, 209, 212, 219, 226, 231, 234, 245, 249, 256, 261, 268, 271, 280, 285, 294, 299, 304
Offset: 1

Views

Author

Mats Granvik, Jun 21 2009

Keywords

Examples

			The 4x4 Redheffer matrix:
  1,1,1,1
  1,1,0,0
  1,0,1,0
  1,1,0,1
contains 11 nonzero elements.
		

Crossrefs

Programs

Formula

a(n) = A006590(n)+A000005(n)-1. [Enrique Pérez Herrero, Sep 28 2009]
a(n) = A006218(n)+n-1. [Enrique Pérez Herrero, Sep 25 2009]
a(1) = 1, a(n) = a(n-1) + A000005(n) + 1 for n > 1. a(1) = 1, a(n) = A006218(n+1) - A000005(n+1) + n - 1 = A006218(n+1) + A049820(n+1) - 2 = A006590(n+1) - 2 for n > 1. [Jaroslav Krizek, Nov 08 2009]

Extensions

Edited by N. J. A. Sloane, Jun 26 2009

A161888 a(n) = the smallest positive integer that does not divide n, and is such that sum{k=1 to n} a(k) is coprime to n.

Original entry on oeis.org

2, 3, 2, 6, 3, 7, 2, 6, 4, 4, 2, 8, 2, 4, 4, 6, 2, 4, 2, 6, 4, 4, 2, 14, 3, 3, 4, 8, 2, 4, 2, 6, 2, 4, 2, 8, 2, 4, 4, 6, 2, 4, 2, 6, 6, 4, 2, 10, 2, 4, 2, 6, 2, 4, 3, 3, 4, 4, 2, 8, 2, 4, 4, 6, 3, 5, 2, 6, 2, 8, 2, 10, 2, 4, 4, 6, 3, 9, 2, 6, 4, 4, 2, 8, 3, 3, 4, 6, 2, 4, 2, 6, 4, 4, 3, 5, 2, 4, 2, 8, 2, 8, 2, 6, 2
Offset: 1

Views

Author

Leroy Quet, Jun 21 2009

Keywords

Comments

Sum{k=1 to n} a(k) = A161889(n).

Crossrefs

Programs

  • Mathematica
    spi[{n_,s_,a_}]:=Module[{k=1},While[Divisible[n+1,k]||!CoprimeQ[s+k, n+1], k++];{n+1,s+k,k}]; Transpose[NestList[spi,{1,2,2},105]][[3]] (* Harvey P. Dale, May 26 2015 *)

Extensions

More terms from Sean A. Irvine, Aug 10 2010
Showing 1-2 of 2 results.