cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006218 a(n) = Sum_{k=1..n} floor(n/k); also Sum_{k=1..n} d(k), where d = number of divisors (A000005); also number of solutions to x*y = z with 1 <= x,y,z <= n.

Original entry on oeis.org

0, 1, 3, 5, 8, 10, 14, 16, 20, 23, 27, 29, 35, 37, 41, 45, 50, 52, 58, 60, 66, 70, 74, 76, 84, 87, 91, 95, 101, 103, 111, 113, 119, 123, 127, 131, 140, 142, 146, 150, 158, 160, 168, 170, 176, 182, 186, 188, 198, 201, 207, 211, 217, 219, 227, 231, 239, 243, 247, 249
Offset: 0

Views

Author

Keywords

Comments

The identity Sum_{k=1..n} floor(n/k) = Sum_{k=1..n} d(k) is Equation (10), p. 58, of Apostol (1976). - N. J. A. Sloane, Dec 06 2020
The "Dirichlet divisor problem" is to find a precise asymptotic estimate for this sequence - see formula lines below, also Apostol (1976), Chap. 3.
Number of increasing arithmetic progressions where n+1 is the second or later term. - Mambetov Timur, Takenov Nurdin, Haritonova Oksana (timus(AT)post.kg; oksanka-61(AT)mail.ru), Jun 13 2002. E.g., a(3) = 5 because there are 5 such arithmetic progressions: (1, 2, 3, 4); (2, 3, 4); (1, 4); (2, 4); (3, 4).
Binomial transform of A001659.
Area covered by overlapped partitions of n, i.e., sum of maximum values of the k-th part of a partition of n into k parts. - Jon Perry, Sep 08 2005
Equals inverse Mobius transform of A116477. - Gary W. Adamson, Aug 07 2008
The Polymath project (see the Tao-Croot-Helfgott link) sketches an algorithm for computing a(n) in essentially cube root time, see section 2.1. - Charles R Greathouse IV, Oct 10 2010 [Sladkey gives another. - Charles R Greathouse IV, Oct 02 2017]
The Dirichlet inverse starts (offset 1) 1, -3, -5, 1, -10, 16, -16, 1, 2, 33, -29, -6, -37, 55, 55, -1, -52, -5, -60, ... - R. J. Mathar, Oct 17 2012
The inverse Mobius transforms yields A143356. - R. J. Mathar, Oct 17 2012
An improved approximation vs. Dirichlet is: a(n) = log(Gamma(n+1)) + 2n*gamma. Using sample ranges of {n = k^2-k to k^2 + (k-1)} the means of the new error term are < +- 0.5 up to k=150, except on two values of k. These ranges appear to give means closest to zero for such small sample sizes. It is not clear sample means remain < +- 0.5 at larger k. The standard deviations are ~(n*log(n))^(1/4)/2, with n near sample range center. - Richard R. Forberg, Jan 06 2015
The values of n for which a(n) is even are given by 4*m^2 <= n <= 4*m(m+1) for m >= 0. Example: for m=1 the values of n are 4 <= n <= 8 for which a(4) to a(8) are even. - G. C. Greubel, Sep 30 2015
For n > 0, a(n) = count(x|y), 1 <= y <= x <= n, that is, the number of pairs in the ordered list of x and y, where y divides x, up to and including n. - Torlach Rush, Jan 31 2017
a(n) is also the total number of partitions of all positive integers <= n into equal parts. - Omar E. Pol, May 29 2017
a(n) is the rank of the join of the set of elements of rank n in Young's lattice, the lattice of all integer partitions ordered by inclusion of their Ferrers diagrams. - Geoffrey Critzer, Jul 11 2018
a(n) always has the same parity as floor(sqrt(n)) = A000196(n): see A211264 (proof in Diophante link). - Bernard Schott, Feb 13 2021
From Omar E. Pol, Feb 16 2021: (Start)
Apart from initial zero this is the convolution of A341062 and A000027.
Nonzero terms convolved with A341062 gives A055507. (End)
From Bernard Schott, Apr 17 2022: (Start)
a(n-1) is the number of lattice points in the first quadrant lying under the hyperbola x*y = n, excluding the lattice points on the axes.
a(n) is the number of lattice points in the first quadrant lying on or under the hyperbola x*y = n, excluding the lattice points on the axes. (Reference Hari Kishan). (End)
Let tiles Tn (for n >= 1) be initially placed on square n on an infinite 1D board. At each step, the leftmost unblocked tile (i.e., the top tile in the leftmost stack) jumps forward exactly n squares. Tiles can stack, and only the top tile of a stack can move. This sequence gives the step number when tile n moves for the first time. - Ali Sada, May 23 2025

Examples

			a(3) = 5 because 3 + floor(3/2) + 1 = 3 + 1 + 1 = 5. Or tau(1) + tau(2) + tau(3) = 1 + 2 + 2 = 5.
a(4) = 8 because 4 + floor(4/2) + floor(4/3) + 1 = 4 + 2 + 1 + 1 = 8. Or
tau(1) + tau(2) + tau(3) + tau(4) = 1 + 2 + 2 + 3 = 8.
a(5) = 10 because 5 + floor(5/2) + floor(5/3) + floor (5/4) + 1 = 5 + 2 + 1 + 1 + 1 = 10. Or tau(1) + tau(2) + tau(3) + tau(4) + tau(5) = 1 + 2 + 2 + 3 + 2 = 10.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
  • K. Chandrasekharan, Introduction to Analytic Number Theory. Springer-Verlag, 1968, Chap. VI.
  • K. Chandrasekharan, Arithmetical Functions. Springer-Verlag, 1970, Chapter VIII, pp. 194-228. Springer-Verlag, Berlin.
  • P. G. L. Dirichlet, Werke, Vol. ii, pp. 49-66.
  • M. N. Huxley, The Distribution of Prime Numbers, Oxford Univ. Press, 1972, p. 7.
  • M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 239.
  • Hari Kishan, Number Theory, Krishna, Educational Publishers, 2014, Theorem 1, p. 133.
  • H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 56.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Nurdin N. Takenov and Oksana Haritonova, Representation of positive integers by a special set of digits and sequences, in Dolmatov, S. L. et al. editors, Materials of Science, Practical seminar "Modern Mathematics".
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.6.13 on page 107.

Crossrefs

Right edge of A056535. Cf. A000005, A001659, A052511, A143236.
Row sums of triangle A003988, A010766 and A143724.
A061017 is an inverse.
It appears that the partial sums give A078567. - N. J. A. Sloane, Nov 24 2008

Programs

  • Haskell
    a006218 n = sum $ map (div n) [1..n]
    -- Reinhard Zumkeller, Jan 29 2011
    
  • Magma
    [0] cat [&+[Floor(n/k):k in [1..n]]:n in [1..60]]; // Marius A. Burtea, Aug 25 2019
    
  • Maple
    with(numtheory): A006218 := n->add(sigma[0](i), i=1..n);
  • Mathematica
    Table[Sum[DivisorSigma[0, k], {k, n}], {n, 70}]
    FoldList[Plus, 0, Table[DivisorSigma[0, x], {x, 61}]] //Rest (* much faster *)
    Join[{0},Accumulate[DivisorSigma[0,Range[60]]]] (* Harvey P. Dale, Jan 06 2016 *)
  • PARI
    a(n)=sum(k=1,n,n\k)
    
  • PARI
    a(n)=sum(k=1,sqrtint(n),n\k)*2-sqrtint(n)^2 \\ Charles R Greathouse IV, Oct 10 2010
    
  • Python
    from sympy import integer_nthroot
    def A006218(n): return 2*sum(n//k for k in range(1,integer_nthroot(n,2)[0]+1))-integer_nthroot(n,2)[0]**2 # Chai Wah Wu, Mar 29 2021

Formula

a(n) = n * ( log(n) + 2*gamma - 1 ) + O(sqrt(n)), where gamma is the Euler-Mascheroni number ~ 0.57721... (see A001620), Dirichlet, 1849. Again, a(n) = n * ( log(n) + 2*gamma - 1 ) + O(log(n)*n^(1/3)). The determination of the precise size of the error term is an unsolved problem (the so-called Dirichlet divisor problem) - see references, especially Huxley (2003).
The bounds from Chandrasekharan lead to the explicit bounds n log(n) + (2 gamma - 1) n - 4 sqrt(n) - 1 <= a(n) <= n log(n) + (2 gamma - 1) n + 4 sqrt(n). - David Applegate, Oct 14 2008
a(n) = 2*(Sum_{i=1..floor(sqrt(n))} floor(n/i)) - floor(sqrt(n))^2. - Benoit Cloitre, May 12 2002
G.f.: (1/(1-x))*Sum_{k >= 1} x^k/(1-x^k). - Benoit Cloitre, Apr 23 2003
For n > 0: A027750(a(n-1) + k) = k-divisor of n, = k <= A000005(n). - Reinhard Zumkeller, May 10 2006
a(n) = A161886(n) - n + 1 = A161886(n-1) - A049820(n) + 2 = A161886(n-1) + A000005(n) - n + 2 = A006590(n) + A000005(n) - n = A006590(n+1) - n - 1 = A006590(n) + A000005(n) - n for n >= 2. a(n) = a(n-1) + A000005(n) for n >= 1. - Jaroslav Krizek, Nov 14 2009
D(n) = Sum_{m >= 2, r >= 1} (r/m^(r+1)) * Sum_{j = 1..m - 1} * Sum_{k = 0 .. m^(r+1) - 1} exp{ 2*k*pi i(p^n + (m - j)m^r) / m^(r+1) } where p is some fixed prime number. - A. Neves, Oct 04 2010
Let E(n) = a(n) - n(log n + 2 gamma - 1). Then Berkane-Bordellès-Ramaré show that |E(n)| <= 0.961 sqrt(n), |E(n)| <= 0.397 sqrt(n) for n > 5559, and |E(n)| <= 0.764 n^(1/3) log n for x > 9994. - Charles R Greathouse IV, Jul 02 2012
a(n) = Sum_{k = 1..floor(sqrt(n))} A005408(floor((n/k) - (k-1))). - Gregory R. Bryant, Apr 20 2013
Dirichlet g.f. for s > 2: Sum_{n>=1} a(n)/n^s = Sum_{k>=1} (Zeta(s-1) - Sum_{n=1..k-1} (HurwitzZeta(s,n/k)*n/k^s))/k. - Mats Granvik, Sep 24 2017
From Ridouane Oudra, Dec 31 2022: (Start)
a(n) = n^2 - Sum_{i=1..n} Sum_{j=1..n} floor(log(i*j)/log(n+1));
a(n) = floor(sqrt(n)) + 2*Sum_{i=1..n} floor((sqrt(i^2 + 4*n) - i)/2);
a(n) = n + Sum_{i=1..n} v_2(i)*round(n/i), where v_2(i) = A007814(i). (End)

A049820 a(n) = n - d(n), where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

0, 0, 1, 1, 3, 2, 5, 4, 6, 6, 9, 6, 11, 10, 11, 11, 15, 12, 17, 14, 17, 18, 21, 16, 22, 22, 23, 22, 27, 22, 29, 26, 29, 30, 31, 27, 35, 34, 35, 32, 39, 34, 41, 38, 39, 42, 45, 38, 46, 44, 47, 46, 51, 46, 51, 48, 53, 54, 57, 48, 59, 58, 57, 57, 61, 58, 65
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of non-divisors of n in 1..n. - Jaroslav Krizek, Nov 14 2009
Also equal to the number of partitions p of n such that max(p)-min(p) = 1. The number of partitions of n with max(p)-min(p) <= 1 is n; there is one with k parts for each 1 <= k <= n. max(p)-min(p) = 0 iff k divides n, leaving n-d(n) with a difference of 1. It is easiest to see this by looking at fixed k with increasing n: for k=3, starting with n=3 the partitions are [1,1,1], [2,1,1], [2,2,1], [2,2,2], [3,2,2], etc. - Giovanni Resta, Feb 06 2006 and Franklin T. Adams-Watters, Jan 30 2011
Number of positive numbers in n-th row of array T given by A049816.
Number of proper non-divisors of n. - Omar E. Pol, May 25 2010
a(n+2) is the sum of the n-th antidiagonal of A225145. - Richard R. Forberg, May 02 2013
For n > 2, number of nonzero terms in n-th row of triangle A051778. - Reinhard Zumkeller, Dec 03 2014
Number of partitions of n of the form [j,j,...,j,i] (j > i). Example: a(7)=5 because we have [6,1], [5,2], [4,3], [3,3,1], and [2,2,2,1]. - Emeric Deutsch, Sep 22 2016

Examples

			a(7) = 5; the 5 non-divisors of 7 in 1..7 are 2, 3, 4, 5, and 6.
The 5 partitions of 7 with max(p) - min(p) = 1 are [4,3], [3,2,2], [2,2,2,1], [2,2,1,1,1] and [2,1,1,1,1,1]. - _Emeric Deutsch_, Mar 01 2006
		

Crossrefs

Cf. A000005.
One less than A062968, two less than A059292.
Cf. A161664 (partial sums).
Cf. A060990 (number of solutions to a(x) = n).
Cf. A045765 (numbers not occurring in this sequence).
Cf. A236561 (same sequence sorted into ascending order), A236562 (with also duplicates removed), A236565, A262901 and A262903.
Cf. A262511 (numbers that occur only once).
Cf. A055927 (positions of repeated terms).
Cf. A245388 (positions of squares).
Cf. A155043 (number of steps needed to reach zero when iterating a(n)), A262680 (number of nonzero squares encountered).
Cf. A259934 (an infinite trunk of the tree defined by edge-relation a(child) = parent, conjectured to be unique).
Cf. tables and arrays A047916, A051731, A051778, A173540, A173541.
Cf. also arrays A225145, A262898, A263255 and tables A263265, A263267.

Programs

Formula

a(n) = Sum_{k=1..n} ceiling(n/k)-floor(n/k). - Benoit Cloitre, May 11 2003
G.f.: Sum_{k>0} x^(2*k+1)/(1-x^k)/(1-x^(k+1)). - Emeric Deutsch, Mar 01 2006
a(n) = A006590(n) - A006218(n) = A161886(n) - A000005(n) - A006218(n) + 1 for n >= 1. - Jaroslav Krizek, Nov 14 2009
a(n) = Sum_{k=1..n} A000007(A051731(n,k)). - Reinhard Zumkeller, Mar 09 2010
a(n) = A076627(n) / A000005(n). - Reinhard Zumkeller, Feb 06 2012
For n >= 2, a(n) = A094181(n) / A051953(n). - Antti Karttunen, Nov 27 2015
a(n) = Sum_{k=1..n} ((n mod k) + (-n mod k))/k. - Wesley Ivan Hurt, Dec 28 2015
G.f.: Sum_{j>=2} (x^(j+1)*(1-x^(j-1))/(1-x^j))/(1-x). - Emeric Deutsch, Sep 22 2016
Dirichlet g.f.: zeta(s-1)- zeta(s)^2. - Ilya Gutkovskiy, Apr 12 2017
a(n) = Sum_{i=1..n-1} sign(i mod n-i). - Wesley Ivan Hurt, Sep 27 2018

Extensions

Edited by Franklin T. Adams-Watters, Jan 30 2012

A002541 a(n) = Sum_{k=1..n-1} floor((n-k)/k).

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 12, 14, 17, 18, 23, 24, 27, 30, 34, 35, 40, 41, 46, 49, 52, 53, 60, 62, 65, 68, 73, 74, 81, 82, 87, 90, 93, 96, 104, 105, 108, 111, 118, 119, 126, 127, 132, 137, 140, 141, 150, 152, 157, 160, 165, 166, 173, 176, 183, 186, 189, 190, 201, 202, 205
Offset: 1

Views

Author

Keywords

Comments

Number of pairs (a, b) with 1 <= a < b <= n, a | b.
The sequence shows how many digit "skips" there have been from 2 to n, a skip being either a prime factor or product thereof. Every time you have a place where you have X skips and the next skip value is X+1, you will have a prime number since a prime number will only add exactly one more skip to get to it. a(n) = Sum_{x=2..n} floor(n/x) - Sum_{x=2..n-1} floor( (n-1)/x) = 1 when prime. - Marius-Paul Dumitrean (marius(AT)neldor.com), Feb 19 2007
A027749(a(n)+1) = n; A027749(a(n)+2) = A020639(n+1). - Reinhard Zumkeller, Nov 22 2003
Number of partitions of n into exactly 2 types of part, where one part is 1, e.g., n=7 gives 1111111, 111112, 11122, 1222, 11113, 133, 1114, 115 and 16, so a(7)=9. - Jon Perry, May 26 2004
The sequence of partial sums of A032741. Idea of proof: floor((n-k)/k) - floor((n-k-1)/k) only increases by 1 when k | n. - George Beck, Feb 12 2012
Also the number of integer partitions of n whose non-1 parts are all equal and with at least one non-1 part. - Gus Wiseman, Oct 07 2018

Examples

			From _Gus Wiseman_, Oct 07 2018: (Start)
The integer partitions whose non-1 parts are all equal and with at least one non-1 part:
  (2)  (3)   (4)    (5)     (6)      (7)       (8)        (9)
       (21)  (22)   (41)    (33)     (61)      (44)       (81)
             (31)   (221)   (51)     (331)     (71)       (333)
             (211)  (311)   (222)    (511)     (611)      (441)
                    (2111)  (411)    (2221)    (2222)     (711)
                            (2211)   (4111)    (3311)     (6111)
                            (3111)   (22111)   (5111)     (22221)
                            (21111)  (31111)   (22211)    (33111)
                                     (211111)  (41111)    (51111)
                                               (221111)   (222111)
                                               (311111)   (411111)
                                               (2111111)  (2211111)
                                                          (3111111)
                                                          (21111111)
(End)
		

References

  • J. P. Gram, Undersoegelser angaaende maengden af primtal under en given graense, Det Kongelige Danskevidenskabernes Selskabs Skrifter, series 6, vol. 2 (1884), 183-288; see Tab. VII: Vaerdier af Funktionen psi(n) og andre numeriske Funktioner, pp. 281-288, especially p. 281.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Antidiagonal sums of array A003988. Antidiagonal sums of A004199.

Programs

  • Haskell
    a002541 n = sum $ zipWith div [n - 1, n - 2 ..] [1 .. n - 1]
    -- Reinhard Zumkeller, Jul 05 2013
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          numtheory[tau](n)-1+a(n-1))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 12 2021
  • Mathematica
    Table[Sum[Floor[(n-k)/k],{k,n-1}],{n,100}] (* Harvey P. Dale, May 02 2011 *)
  • PARI
    a(n)=sum(k=1,n-1, n\k-1) \\ Charles R Greathouse IV, Feb 07 2017
    
  • PARI
    first(n)=my(v=vector(n),s); for(k=1,n, v[k]=-k+s+=numdiv(k)); v \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from math import isqrt
    def A002541(n): return (sum(n//k for k in range(1,isqrt(n)+1))<<1)-isqrt(n)**2-n # Chai Wah Wu, Oct 20 2023

Formula

a(n) = -n + Sum_{k=1..n} tau(k). - Vladeta Jovovic, Oct 17 2002
G.f.: 1/(1-x) * Sum_{k>=2} x^k/(1-x^k). - Benoit Cloitre, Apr 23 2003
a(n) = Sum_{i=2..n} floor(n/i). - Jon Perry, Feb 02 2004
a(n) = (Sum_{i=2..n} ceiling((n+1)/i)) - n + 1. - Jon Perry, May 26 2004 [corrected by Jason Yuen, Jul 31 2024]
a(n) = A006218(n) - n. Proof: floor((n-k)/k)+1 = floor(n/k). Then Sum_{k=1..n-1} floor((n-k)/k)+(n-1)+1 = Sum_{k=1..n-1} floor(n/k) + floor(n/n) = Sum_{k=1..n} floor(n/k); i.e., a(n) + n = A006218(n). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n) = A161886(n) - (2n-1). - Eric Desbiaux, Jul 10 2013
a(n+1) = Sum_{k=1..n} A004199(n-k+1,k). - L. Edson Jeffery, Aug 31 2014
a(n) = -Sum_{i=1..n} floor((n-2i+1)/(n-i+1)). - Wesley Ivan Hurt, May 08 2016
a(n) = Sum_{i=1..floor(n/2)} floor((n-i)/i). - Wesley Ivan Hurt, Nov 16 2017
a(n) = Sum_{k=1..n-1} (A000005(n-k) - 1). - Gus Wiseman, Oct 07 2018
a(n) ~ n * (log(n) + 2*EulerGamma - 2). - Rok Cestnik, Dec 19 2020

Extensions

More terms from David W. Wilson

A006590 a(n) = Sum_{k=1..n} ceiling(n/k).

Original entry on oeis.org

1, 3, 6, 9, 13, 16, 21, 24, 29, 33, 38, 41, 48, 51, 56, 61, 67, 70, 77, 80, 87, 92, 97, 100, 109, 113, 118, 123, 130, 133, 142, 145, 152, 157, 162, 167, 177, 180, 185, 190, 199, 202, 211, 214, 221, 228, 233, 236, 247, 251, 258, 263, 270, 273, 282, 287, 296, 301
Offset: 1

Views

Author

Keywords

Comments

The following sequences all have the same parity: A004737, A006590, A027052, A071028, A071797, A078358, A078446. - Jeremy Gardiner, Mar 16 2003
Given the fact that ceiling(x) <= x+1, we can, using well known results for the harmonic series, easily derive that n*log(n) <= a(n) <= n*(1+log(n)) + n = n(log(n)+2). - Stefan Steinerberger, Apr 08 2006

References

  • Marc LeBrun, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006590 n = sum $ map f [1..n] where
       f x = y + 1 - 0 ^ r where (y, r) = divMod n x
    -- Reinhard Zumkeller, Feb 18 2013
    
  • Magma
    [&+[Ceiling(n/j): j in [1..n]] : n in [1..60]]; // G. C. Greubel, Nov 07 2019
    
  • Maple
    seq(add(ceil(n/j), j = 1..n), n = 1..60); # G. C. Greubel, Nov 07 2019
  • Mathematica
    Table[Sum[Ceiling[n/i], {i, 1, n}], {n, 1, 60}] (* Stefan Steinerberger, Apr 08 2006 *)
    nxt[{n_,a_}]:={n+1,a+DivisorSigma[0,n]+1}; Transpose[NestList[nxt,{1,1},60]][[2]] (* Harvey P. Dale, Aug 23 2013 *)
  • PARI
    first(n)=my(v=vector(n,i,i),s); for(i=1,n-1,v[i+1]+=s+=numdiv(i)); v \\ Charles R Greathouse IV, Feb 07 2017
    
  • PARI
    a(n) = n + sum(k=1, n-1, (n-1)\k); \\ Michel Marcus, Oct 10 2021
    
  • Python
    from math import isqrt
    def A006590(n): return (lambda m: n+2*sum((n-1)//k for k in range(1, m+1))-m*m)(isqrt(n-1)) # Chai Wah Wu, Oct 09 2021
  • Sage
    [sum(ceil(n/j) for j in (1..n)) for n in (1..60)] # G. C. Greubel, Nov 07 2019
    

Formula

a(n) = n+Sum_{k=1..n-1} tau(k). - Vladeta Jovovic, Oct 17 2002
a(n) = 1 + a(n-1) + tau(n-1), a(n) = A006218(n-1) + n. - T. D. Noe, Jan 05 2007
a(n) = a(n-1) + A000005(n) + 1 for n >= 2. a(n) = A161886(n) - A000005(n) + 1 = A161886(n-1) + 2 = A006218(n) + A049820(n) for n >= 1. - Jaroslav Krizek, Nov 14 2009

Extensions

More terms from Stefan Steinerberger, Apr 08 2006

A212356 Number of terms of the cycle index polynomial Z(D_n) for the dihedral group D_n.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 5, 4, 5, 3, 7, 3, 5, 5, 6, 3, 7, 3, 7, 5, 5, 3, 9, 4, 5, 5, 7, 3, 9, 3, 7, 5, 5, 5, 10, 3, 5, 5, 9, 3, 9, 3, 7, 7, 5, 3, 11, 4, 7, 5, 7, 3, 9, 5, 9, 5, 5, 3, 13, 3, 5, 7, 8, 5, 9, 3, 7, 5, 9, 3, 13, 3, 5, 7, 7, 5, 9, 3, 11, 6, 5, 3, 13, 5, 5, 5, 9, 3, 13
Offset: 1

Views

Author

Wolfdieter Lang, Jun 02 2012

Keywords

Comments

See A212355 for the formula for the cycle index Z(D_n) of the dihedral group, the Harary and Palmer reference, and a link for these polynomials for n=1..15.
It seems that this is also the number of different sets of distances of n points placed on 2n equidistant points on a circle. - M. F. Hasler, Jan 28 2013

Examples

			a(6) = 5, because tau(6) = 4. The row no. 6 of A212355 is [2,0,0,2,0,0,4,0,3,0,1] with 5 non-vanishing entries.
Illustration of a(7)=3 = number of different sets of distances of 7 points among {z=e^(i k pi/7), k=0..13}: Inequivalent configurations are, e.g.: [k]=[0,2,4,6,8,10,12] with distances {0.86777, 1.5637, 1.9499}, [k]=[0,1,2,3,4,5,6] with distances {0.44504, 0.86777, 1.2470, 1.5637, 1.8019, 1.9499}, and [k]=[0,1,2,3,4,5,7] with distances {0.44504, 0.86777, 1.2470, 1.5637, 1.8019, 1.9499, 2.0000}. - _M. F. Hasler_, Jan 28 2013
		

Crossrefs

Programs

Formula

a(n) is the number of non-vanishing entries in row n of the array A212355.
a(1) = 1, a(2) = 2, and a(n) = tau(n) + 1, n>=3, with tau(n) the number of all divisors of n, given in A000005(n).
Except for a(1) and a(2), a(n) = A161886(n+1) - A161886(n). - Eric Desbiaux, Sep 25 2013
Showing 1-5 of 5 results.